Deep Reinforcement Learning for Wireless Networks

This Springerbrief presents a deep reinforcement learning approach to wireless systems to improve system performance. Particularly, deep reinforcement learning approach is used in cache-enabled opportunistic interference alignment wireless networks and mobile social networks. Simulation results with...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Yu, F. Richard (Συγγραφέας, http://id.loc.gov/vocabulary/relators/aut), He, Ying (http://id.loc.gov/vocabulary/relators/aut)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Springer, 2019.
Έκδοση:1st ed. 2019.
Σειρά:SpringerBriefs in Electrical and Computer Engineering,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03162nam a2200505 4500
001 978-3-030-10546-4
003 DE-He213
005 20191220125326.0
007 cr nn 008mamaa
008 190117s2019 gw | s |||| 0|eng d
020 |a 9783030105464  |9 978-3-030-10546-4 
024 7 |a 10.1007/978-3-030-10546-4  |2 doi 
040 |d GrThAP 
050 4 |a TK5103.2-.4885 
072 7 |a TJKW  |2 bicssc 
072 7 |a TEC061000  |2 bisacsh 
072 7 |a TJKW  |2 thema 
082 0 4 |a 384.5  |2 23 
100 1 |a Yu, F. Richard.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Deep Reinforcement Learning for Wireless Networks  |h [electronic resource] /  |c by F. Richard Yu, Ying He. 
250 |a 1st ed. 2019. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2019. 
300 |a VIII, 71 p. 28 illus., 26 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a SpringerBriefs in Electrical and Computer Engineering,  |x 2191-8112 
520 |a This Springerbrief presents a deep reinforcement learning approach to wireless systems to improve system performance. Particularly, deep reinforcement learning approach is used in cache-enabled opportunistic interference alignment wireless networks and mobile social networks. Simulation results with different network parameters are presented to show the effectiveness of the proposed scheme. There is a phenomenal burst of research activities in artificial intelligence, deep reinforcement learning and wireless systems. Deep reinforcement learning has been successfully used to solve many practical problems. For example, Google DeepMind adopts this method on several artificial intelligent projects with big data (e.g., AlphaGo), and gets quite good results.. Graduate students in electrical and computer engineering, as well as computer science will find this brief useful as a study guide. Researchers, engineers, computer scientists, programmers, and policy makers will also find this brief to be a useful tool. . 
650 0 |a Wireless communication systems. 
650 0 |a Mobile communication systems. 
650 0 |a Artificial intelligence. 
650 0 |a Electrical engineering. 
650 1 4 |a Wireless and Mobile Communication.  |0 http://scigraph.springernature.com/things/product-market-codes/T24100 
650 2 4 |a Artificial Intelligence.  |0 http://scigraph.springernature.com/things/product-market-codes/I21000 
650 2 4 |a Communications Engineering, Networks.  |0 http://scigraph.springernature.com/things/product-market-codes/T24035 
700 1 |a He, Ying.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783030105457 
776 0 8 |i Printed edition:  |z 9783030105471 
830 0 |a SpringerBriefs in Electrical and Computer Engineering,  |x 2191-8112 
856 4 0 |u https://doi.org/10.1007/978-3-030-10546-4  |z Full Text via HEAL-Link 
912 |a ZDB-2-ENG 
950 |a Engineering (Springer-11647)