Deep Reinforcement Learning for Wireless Networks
This Springerbrief presents a deep reinforcement learning approach to wireless systems to improve system performance. Particularly, deep reinforcement learning approach is used in cache-enabled opportunistic interference alignment wireless networks and mobile social networks. Simulation results with...
Κύριοι συγγραφείς: | Yu, F. Richard (Συγγραφέας, http://id.loc.gov/vocabulary/relators/aut), He, Ying (http://id.loc.gov/vocabulary/relators/aut) |
---|---|
Συγγραφή απο Οργανισμό/Αρχή: | SpringerLink (Online service) |
Μορφή: | Ηλεκτρονική πηγή Ηλ. βιβλίο |
Γλώσσα: | English |
Έκδοση: |
Cham :
Springer International Publishing : Imprint: Springer,
2019.
|
Έκδοση: | 1st ed. 2019. |
Σειρά: | SpringerBriefs in Electrical and Computer Engineering,
|
Θέματα: | |
Διαθέσιμο Online: | Full Text via HEAL-Link |
Παρόμοια τεκμήρια
-
Introduction to Hybrid Intelligent Networks Modeling, Communication, and Control /
ανά: Guan, Zhi-Hong, κ.ά.
Έκδοση: (2019) -
Learning-based VANET Communication and Security Techniques
ανά: Xiao, Liang, κ.ά.
Έκδοση: (2019) -
Developing Networks using Artificial Intelligence
ανά: Yao, Haipeng, κ.ά.
Έκδοση: (2019) -
Massive Machine Type Communications Multiple Access Schemes /
ανά: Wang, Fanggang, κ.ά.
Έκδοση: (2019) -
Advances in Information and Communication Technologies Processing and Control in Information and Communication Systems /
Έκδοση: (2019)