Non-Self-Adjoint Differential Operators, Spectral Asymptotics and Random Perturbations

The asymptotic distribution of eigenvalues of self-adjoint differential operators in the high-energy limit, or the semi-classical limit, is a classical subject going back to H. Weyl of more than a century ago. In the last decades there has been a renewed interest in non-self-adjoint differential ope...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Sjöstrand, Johannes (Συγγραφέας, http://id.loc.gov/vocabulary/relators/aut)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Birkhäuser, 2019.
Έκδοση:1st ed. 2019.
Σειρά:Pseudo-Differential Operators, Theory and Applications, 14
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03407nam a2200517 4500
001 978-3-030-10819-9
003 DE-He213
005 20191027001808.0
007 cr nn 008mamaa
008 190517s2019 gw | s |||| 0|eng d
020 |a 9783030108199  |9 978-3-030-10819-9 
024 7 |a 10.1007/978-3-030-10819-9  |2 doi 
040 |d GrThAP 
050 4 |a QA331-355 
072 7 |a PBKD  |2 bicssc 
072 7 |a MAT034000  |2 bisacsh 
072 7 |a PBKD  |2 thema 
082 0 4 |a 515.9  |2 23 
100 1 |a Sjöstrand, Johannes.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Non-Self-Adjoint Differential Operators, Spectral Asymptotics and Random Perturbations  |h [electronic resource] /  |c by Johannes Sjöstrand. 
250 |a 1st ed. 2019. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Birkhäuser,  |c 2019. 
300 |a X, 496 p. 71 illus., 69 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Pseudo-Differential Operators, Theory and Applications,  |x 2297-0355 ;  |v 14 
520 |a The asymptotic distribution of eigenvalues of self-adjoint differential operators in the high-energy limit, or the semi-classical limit, is a classical subject going back to H. Weyl of more than a century ago. In the last decades there has been a renewed interest in non-self-adjoint differential operators which have many subtle properties such as instability under small perturbations. Quite remarkably, when adding small random perturbations to such operators, the eigenvalues tend to distribute according to Weyl's law (quite differently from the distribution for the unperturbed operators in analytic cases). A first result in this direction was obtained by M. Hager in her thesis of 2005. Since then, further general results have been obtained, which are the main subject of the present book. Additional themes from the theory of non-self-adjoint operators are also treated. The methods are very much based on microlocal analysis and especially on pseudodifferential operators. The reader will find a broad field with plenty of open problems. 
650 0 |a Functions of complex variables. 
650 0 |a Differential equations. 
650 0 |a Partial differential equations. 
650 0 |a Operator theory. 
650 1 4 |a Functions of a Complex Variable.  |0 http://scigraph.springernature.com/things/product-market-codes/M12074 
650 2 4 |a Several Complex Variables and Analytic Spaces.  |0 http://scigraph.springernature.com/things/product-market-codes/M12198 
650 2 4 |a Ordinary Differential Equations.  |0 http://scigraph.springernature.com/things/product-market-codes/M12147 
650 2 4 |a Partial Differential Equations.  |0 http://scigraph.springernature.com/things/product-market-codes/M12155 
650 2 4 |a Operator Theory.  |0 http://scigraph.springernature.com/things/product-market-codes/M12139 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783030108182 
776 0 8 |i Printed edition:  |z 9783030108205 
830 0 |a Pseudo-Differential Operators, Theory and Applications,  |x 2297-0355 ;  |v 14 
856 4 0 |u https://doi.org/10.1007/978-3-030-10819-9  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)