Machine Learning and Knowledge Discovery in Databases European Conference, ECML PKDD 2018, Dublin, Ireland, September 10-14, 2018, Proceedings, Part I /

The three volume proceedings LNAI 11051 - 11053 constitutes the refereed proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases, ECML PKDD 2018, held in Dublin, Ireland, in September 2018. The total of 131 regular papers presented in part I and part II was ca...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Άλλοι συγγραφείς: Berlingerio, Michele (Επιμελητής έκδοσης, http://id.loc.gov/vocabulary/relators/edt), Bonchi, Francesco (Επιμελητής έκδοσης, http://id.loc.gov/vocabulary/relators/edt), Gärtner, Thomas (Επιμελητής έκδοσης, http://id.loc.gov/vocabulary/relators/edt), Hurley, Neil (Επιμελητής έκδοσης, http://id.loc.gov/vocabulary/relators/edt), Ifrim, Georgiana (Επιμελητής έκδοσης, http://id.loc.gov/vocabulary/relators/edt)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Springer, 2019.
Έκδοση:1st ed. 2019.
Σειρά:Lecture Notes in Artificial Intelligence ; 11051
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 07202nam a2200625 4500
001 978-3-030-10925-7
003 DE-He213
005 20191220130324.0
007 cr nn 008mamaa
008 190117s2019 gw | s |||| 0|eng d
020 |a 9783030109257  |9 978-3-030-10925-7 
024 7 |a 10.1007/978-3-030-10925-7  |2 doi 
040 |d GrThAP 
050 4 |a Q334-342 
072 7 |a UYQ  |2 bicssc 
072 7 |a COM004000  |2 bisacsh 
072 7 |a UYQ  |2 thema 
082 0 4 |a 006.3  |2 23 
245 1 0 |a Machine Learning and Knowledge Discovery in Databases  |h [electronic resource] :  |b European Conference, ECML PKDD 2018, Dublin, Ireland, September 10-14, 2018, Proceedings, Part I /  |c edited by Michele Berlingerio, Francesco Bonchi, Thomas Gärtner, Neil Hurley, Georgiana Ifrim. 
250 |a 1st ed. 2019. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2019. 
300 |a XXXVIII, 740 p. 451 illus., 159 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Lecture Notes in Artificial Intelligence ;  |v 11051 
505 0 |a Adversarial Learning -- Image Anomaly Detection with Generative Adversarial Networks -- Image-to-Markup Generation via Paired Adversarial Learning -- Toward an Understanding of Adversarial Examples in Clinical Trials -- ShapeShifter: Robust Physical Adversarial Attack on Faster R-CNN Object Detector -- Anomaly and Outlier Detection -- GridWatch: Sensor Placement and Anomaly Detection in the Electrical Grid -- Incorporating Privileged Information to Unsupervised Anomaly Detection -- L1-Depth Revisited: A Robust Angle-based Outlier Factor in High-dimensional Space -- Beyond Outlier Detection: LookOut for Pictorial Explanation -- Scalable and Interpretable One-class SVMs with Deep Learning and Random Fourier Features -- Group Anomaly Detection using Deep Generative Models -- Applications -- A Discriminative Model for Identifying Readers and Assessing Text Comprehension from Eye Movements -- Face-Cap: Image Captioning using Facial Expression Analysis -- Pedestrian Trajectory Prediction with Structured Memory Hierarchies -- Classification -- Multiple Instance Learning with Bag-level Randomized Trees -- One-class Quantification -- Deep F-Measure Maximization in Multi-Label Classification: A Comparative Study -- Ordinal Label Proportions -- AWX: An Integrated Approach to Hierarchical-Multilabel Classification -- Clustering and Unsupervised Learning -- Clustering in the Presence of Concept Drift -- Time Warp Invariant Dictionary Learning for Time Series Clustering -- How Your Supporters and Opponents Define Your Interestingness -- Deep Learning -- Efficient Decentralized Deep Learning by Dynamic Model Averaging -- Using Supervised Pretraining to Improve Generalization of Neural Networks on Binary Classification Problems -- Towards Efficient Forward Propagation on Resource-Constrained Systems -- Auxiliary Guided Autoregressive Variational Autoencoders -- Cooperative Multi-Agent Policy Gradient -- Parametric t-Distributed Stochastic Exemplar-centered Embedding -- Joint autoencoders: a flexible meta-learning framework -- Privacy Preserving Synthetic Data Release Using Deep Learning -- On Finer Control of Information Flow in LSTMs -- MaxGain: Regularisation of Neural Networks by Constraining Activation Magnitudes -- Ontology alignment based on word embedding and random forest classification -- Domain Adaption in One-Shot Learning -- Ensemble Methods -- Axiomatic Characterization of AdaBoost and the Multiplicative Weight Update Procedure -- Modular Dimensionality Reduction -- Constructive Aggregation and its Application to Forecasting with Dynamic Ensembles -- MetaBags: Bagged Meta-Decision Trees for Regression -- Evaluation -- Visualizing the Feature Importance for Black Box Models -- Efficient estimation of AUC in a sliding window -- Controlling and visualizing the precision-recall tradeoff for external performance indices -- Evaluation Procedures for Forecasting with Spatio-Temporal Data -- A Blended Metric for Multi-label Optimisation and Evaluation. 
520 |a The three volume proceedings LNAI 11051 - 11053 constitutes the refereed proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases, ECML PKDD 2018, held in Dublin, Ireland, in September 2018. The total of 131 regular papers presented in part I and part II was carefully reviewed and selected from 535 submissions; there are 52 papers in the applied data science, nectar and demo track. The contributions were organized in topical sections named as follows: Part I: adversarial learning; anomaly and outlier detection; applications; classification; clustering and unsupervised learning; deep learningensemble methods; and evaluation. Part II: graphs; kernel methods; learning paradigms; matrix and tensor analysis; online and active learning; pattern and sequence mining; probabilistic models and statistical methods; recommender systems; and transfer learning. Part III: ADS data science applications; ADS e-commerce; ADS engineering and design; ADS financial and security; ADS health; ADS sensing and positioning; nectar track; and demo track. 
650 0 |a Artificial intelligence. 
650 0 |a Data mining. 
650 0 |a Optical data processing. 
650 0 |a Application software. 
650 0 |a Computers. 
650 0 |a Data protection. 
650 1 4 |a Artificial Intelligence.  |0 http://scigraph.springernature.com/things/product-market-codes/I21000 
650 2 4 |a Data Mining and Knowledge Discovery.  |0 http://scigraph.springernature.com/things/product-market-codes/I18030 
650 2 4 |a Image Processing and Computer Vision.  |0 http://scigraph.springernature.com/things/product-market-codes/I22021 
650 2 4 |a Computer Appl. in Social and Behavioral Sciences.  |0 http://scigraph.springernature.com/things/product-market-codes/I23028 
650 2 4 |a Computing Milieux.  |0 http://scigraph.springernature.com/things/product-market-codes/I24008 
650 2 4 |a Security.  |0 http://scigraph.springernature.com/things/product-market-codes/I28000 
700 1 |a Berlingerio, Michele.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a Bonchi, Francesco.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a Gärtner, Thomas.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a Hurley, Neil.  |e editor.  |0 (orcid)0000-0001-8428-2866  |1 https://orcid.org/0000-0001-8428-2866  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a Ifrim, Georgiana.  |e editor.  |0 (orcid)0000-0002-8400-2972  |1 https://orcid.org/0000-0002-8400-2972  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783030109240 
776 0 8 |i Printed edition:  |z 9783030109264 
830 0 |a Lecture Notes in Artificial Intelligence ;  |v 11051 
856 4 0 |u https://doi.org/10.1007/978-3-030-10925-7  |z Full Text via HEAL-Link 
912 |a ZDB-2-SCS 
912 |a ZDB-2-LNC 
950 |a Computer Science (Springer-11645)