From Security to Community Detection in Social Networking Platforms

This book focuses on novel and state-of-the-art scientific work in the area of detection and prediction techniques using information found generally in graphs and particularly in social networks. Community detection techniques are presented in diverse contexts and for different applications while pr...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Άλλοι συγγραφείς: Karampelas, Panagiotis (Επιμελητής έκδοσης, http://id.loc.gov/vocabulary/relators/edt), Kawash, Jalal (Επιμελητής έκδοσης, http://id.loc.gov/vocabulary/relators/edt), Özyer, Tansel (Επιμελητής έκδοσης, http://id.loc.gov/vocabulary/relators/edt)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Springer, 2019.
Έκδοση:1st ed. 2019.
Σειρά:Lecture Notes in Social Networks,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 04454nam a2200601 4500
001 978-3-030-11286-8
003 DE-He213
005 20191026081845.0
007 cr nn 008mamaa
008 190409s2019 gw | s |||| 0|eng d
020 |a 9783030112868  |9 978-3-030-11286-8 
024 7 |a 10.1007/978-3-030-11286-8  |2 doi 
040 |d GrThAP 
050 4 |a QA76.9.D343 
072 7 |a UNF  |2 bicssc 
072 7 |a COM021030  |2 bisacsh 
072 7 |a UNF  |2 thema 
072 7 |a UYQE  |2 thema 
082 0 4 |a 006.312  |2 23 
245 1 0 |a From Security to Community Detection in Social Networking Platforms  |h [electronic resource] /  |c edited by Panagiotis Karampelas, Jalal Kawash, Tansel Özyer. 
250 |a 1st ed. 2019. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2019. 
300 |a X, 237 p. 98 illus., 70 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Lecture Notes in Social Networks,  |x 2190-5428 
505 0 |a Chapter1. Real-world application of ego-network analysis to evaluate environmental management structures -- Chapter2. An Evolutionary Approach for Detecting Communities in Social Networks -- Chapter3. On Detecting Multidimensional Communities -- Chapter4. Derivatives in Graph Space with Applications for Finding and Tracking Local Communities -- Chapter5. Graph Clustering Based on Attribute-aware Graph Embedding -- Chapter6. On Counting Triangles through Edge Sampling in Large Dynamic Graphs -- Chapter7. Generation and Corruption of Semi-structured and Structured Data -- Chapter8. A Data Science Approach to Predict the Impact of Collateralization on Systemic Risk -- Chapter9. Mining actionable information from security forums: the case of malicious IP addresses -- Chapter10. Temporal Methods to Detect Content-Based Anomalies in Social Media. 
520 |a This book focuses on novel and state-of-the-art scientific work in the area of detection and prediction techniques using information found generally in graphs and particularly in social networks. Community detection techniques are presented in diverse contexts and for different applications while prediction methods for structured and unstructured data are applied to a variety of fields such as financial systems, security forums, and social networks. The rest of the book focuses on graph-based techniques for data analysis such as graph clustering and edge sampling. The research presented in this volume was selected based on solid reviews from the IEEE/ACM International Conference on Advances in Social Networks, Analysis, and Mining (ASONAM '17). Chapters were then improved and extended substantially, and the final versions were rigorously reviewed and revised to meet the series standards. This book will appeal to practitioners, researchers and students in the field. 
650 0 |a Data mining. 
650 0 |a Social sciences-Data processing. 
650 0 |a Social sciences-Computer programs. 
650 0 |a Big data. 
650 0 |a Application software. 
650 0 |a Statistical physics. 
650 0 |a Dynamical systems. 
650 1 4 |a Data Mining and Knowledge Discovery.  |0 http://scigraph.springernature.com/things/product-market-codes/I18030 
650 2 4 |a Computational Social Sciences.  |0 http://scigraph.springernature.com/things/product-market-codes/X34000 
650 2 4 |a Big Data/Analytics.  |0 http://scigraph.springernature.com/things/product-market-codes/522070 
650 2 4 |a Computer Appl. in Social and Behavioral Sciences.  |0 http://scigraph.springernature.com/things/product-market-codes/I23028 
650 2 4 |a Complex Systems.  |0 http://scigraph.springernature.com/things/product-market-codes/P33000 
700 1 |a Karampelas, Panagiotis.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a Kawash, Jalal.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a Özyer, Tansel.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783030112851 
776 0 8 |i Printed edition:  |z 9783030112875 
830 0 |a Lecture Notes in Social Networks,  |x 2190-5428 
856 4 0 |u https://doi.org/10.1007/978-3-030-11286-8  |z Full Text via HEAL-Link 
912 |a ZDB-2-SCS 
950 |a Computer Science (Springer-11645)