Modern Statistical Methods for Spatial and Multivariate Data

This contributed volume features invited papers on current models and statistical methods for spatial and multivariate data. With a focus on recent advances in statistics, topics include spatio-temporal aspects, classification techniques, the multivariate outcomes with zero and doubly-inflated data,...

Full description

Bibliographic Details
Corporate Author: SpringerLink (Online service)
Other Authors: Diawara, Norou (Editor, http://id.loc.gov/vocabulary/relators/edt)
Format: Electronic eBook
Language:English
Published: Cham : Springer International Publishing : Imprint: Springer, 2019.
Edition:1st ed. 2019.
Series:STEAM-H: Science, Technology, Engineering, Agriculture, Mathematics & Health,
Subjects:
Online Access:Full Text via HEAL-Link
Table of Contents:
  • A. Working, M. Alqawba, and N. Diawara: Functional Form of Markovian Attribute-level Best-Worst Discrete Choice Modelling
  • D. Hitchcock, H. Liu, and S. Zahra Samadi
  • Spatial and Spatio-temporal Analysis of Precipitation Data from South Carolina
  • D. Musgrove, D. Young, J. Hughes, and L. E. Eberly: A sparse areal mixed model for multivariate outcomes, with an application to zero-inflated Census data
  • E. M. Maboudou-Tchao: Wavelet Kernels for Support Matrix Machines
  • S. A. Janse and K. L. Thompson: Properties of the number of iterations of a feasible solutions algorithm
  • R. Dey and M. S. Mulekar: A Primer of Statistical Methods for Classification
  • M. Sheth-Chandra, N. R. Chaganty, and R. T. Sabo: A Doubly-Inflated Poisson Distribution and Regression Model
  • J. Mathews, S. Sen, and I. Das: Multivariate Doubly-Inflated Negative Binomial Distribution using Gaussian Copula
  • J. Lorio, N. Diawara, and L. Waller: Quantifying spatio-temporal characteristics via Moran's statistics.