Linear and Quasilinear Parabolic Problems Volume II: Function Spaces /

This volume discusses an in-depth theory of function spaces in an Euclidean setting, including several new features, not previously covered in the literature. In particular, it develops a unified theory of anisotropic Besov and Bessel potential spaces on Euclidean corners, with infinite-dimensional...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Amann, Herbert (Συγγραφέας, http://id.loc.gov/vocabulary/relators/aut)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Birkhäuser, 2019.
Έκδοση:1st ed. 2019.
Σειρά:Monographs in Mathematics, 106
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 02891nam a2200445 4500
001 978-3-030-11763-4
003 DE-He213
005 20190620141641.0
007 cr nn 008mamaa
008 190416s2019 gw | s |||| 0|eng d
020 |a 9783030117634  |9 978-3-030-11763-4 
024 7 |a 10.1007/978-3-030-11763-4  |2 doi 
040 |d GrThAP 
050 4 |a QA319-329.9 
072 7 |a PBKF  |2 bicssc 
072 7 |a MAT037000  |2 bisacsh 
072 7 |a PBKF  |2 thema 
082 0 4 |a 515.7  |2 23 
100 1 |a Amann, Herbert.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Linear and Quasilinear Parabolic Problems  |h [electronic resource] :  |b Volume II: Function Spaces /  |c by Herbert Amann. 
250 |a 1st ed. 2019. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Birkhäuser,  |c 2019. 
300 |a XVI, 462 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Monographs in Mathematics,  |x 1017-0480 ;  |v 106 
505 0 |a Restriction-Extension Pairs -- Sequence Spaces -- Anisotropy -- Classical Spaces -- Besov Spaces -- Intrinsic Norms, Slobodeckii and Hölder Spaces -- Bessel Potential Spaces -- Triebel-Lizorkin Spaces -- Point-Wise Multiplications -- Compactness -- Parameter-Dependent Spaces. 
520 |a This volume discusses an in-depth theory of function spaces in an Euclidean setting, including several new features, not previously covered in the literature. In particular, it develops a unified theory of anisotropic Besov and Bessel potential spaces on Euclidean corners, with infinite-dimensional Banach spaces as targets. It especially highlights the most important subclasses of Besov spaces, namely Slobodeckii and Hölder spaces. In this case, no restrictions are imposed on the target spaces, except for reflexivity assumptions in duality results. In this general setting, the author proves sharp embedding, interpolation, and trace theorems, point-wise multiplier results, as well as Gagliardo-Nirenberg estimates and generalizations of Aubin-Lions compactness theorems. The results presented pave the way for new applications in situations where infinite-dimensional target spaces are relevant - in the realm of stochastic differential equations, for example. 
650 0 |a Functional analysis. 
650 1 4 |a Functional Analysis.  |0 http://scigraph.springernature.com/things/product-market-codes/M12066 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783030117627 
776 0 8 |i Printed edition:  |z 9783030117641 
830 0 |a Monographs in Mathematics,  |x 1017-0480 ;  |v 106 
856 4 0 |u https://doi.org/10.1007/978-3-030-11763-4  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)