Applied Data Science Lessons Learned for the Data-Driven Business /

This book has two main goals: to define data science through the work of data scientists and their results, namely data products, while simultaneously providing the reader with relevant lessons learned from applied data science projects at the intersection of academia and industry. As such, it is no...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Άλλοι συγγραφείς: Braschler, Martin (Επιμελητής έκδοσης, http://id.loc.gov/vocabulary/relators/edt), Stadelmann, Thilo (Επιμελητής έκδοσης, http://id.loc.gov/vocabulary/relators/edt), Stockinger, Kurt (Επιμελητής έκδοσης, http://id.loc.gov/vocabulary/relators/edt)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Springer, 2019.
Έκδοση:1st ed. 2019.
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 05943nam a2200529 4500
001 978-3-030-11821-1
003 DE-He213
005 20191029022121.0
007 cr nn 008mamaa
008 190613s2019 gw | s |||| 0|eng d
020 |a 9783030118211  |9 978-3-030-11821-1 
024 7 |a 10.1007/978-3-030-11821-1  |2 doi 
040 |d GrThAP 
050 4 |a QA76.9.D343 
072 7 |a UNF  |2 bicssc 
072 7 |a COM021030  |2 bisacsh 
072 7 |a UNF  |2 thema 
072 7 |a UYQE  |2 thema 
082 0 4 |a 006.312  |2 23 
245 1 0 |a Applied Data Science  |h [electronic resource] :  |b Lessons Learned for the Data-Driven Business /  |c edited by Martin Braschler, Thilo Stadelmann, Kurt Stockinger. 
250 |a 1st ed. 2019. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2019. 
300 |a XIII, 465 p. 121 illus., 92 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a Preface -- 1 Introduction -- 2 Data Science -- 3 Data Scientists -- 4 Data products -- 5 Legal Aspects of Applied Data Science -- 6 Risks and Side Effects of Data Science and Data Technology -- 7 Organization -- 8 What is Data Science? -- 9 On Developing Data Science -- 10 The ethics of Big Data applications in the consumer sector -- 11 Statistical Modelling -- 12 Beyond ImageNet - Deep Learning in Industrial Practice -- 13 THE BEAUTY OF SMALL DATA - AN INFORMATION RETRIEVAL PERSPECTIVE -- 14 Narrative Visualization of Open Data -- 15 Security of Data Science and Data Science for Security -- 16 Online Anomaly Detection over Big Data Streams -- 17 Unsupervised Learning and Simulation for Complexity Management in Business Operations -- 18 Data Warehousing and Exploratory Analysis for Market Monitoring -- 19 Mining Person-Centric Datasets for Insight, Prediction, and Public Health Planning -- 20 Economic Measures of Forecast Accuracy for Demand Planning - A Case-Based Discussion -- 21 Large-Scale Data-Driven Financial Risk Assessment -- 22 Governance and IT Architecture -- 23 Image Analysis at Scale for Finding the Links between Structure and Biology -- 24 Lessons Learned from Challenging Data Science Case Studies. . 
520 |a This book has two main goals: to define data science through the work of data scientists and their results, namely data products, while simultaneously providing the reader with relevant lessons learned from applied data science projects at the intersection of academia and industry. As such, it is not a replacement for a classical textbook (i.e., it does not elaborate on fundamentals of methods and principles described elsewhere), but systematically highlights the connection between theory, on the one hand, and its application in specific use cases, on the other. With these goals in mind, the book is divided into three parts: Part I pays tribute to the interdisciplinary nature of data science and provides a common understanding of data science terminology for readers with different backgrounds. These six chapters are geared towards drawing a consistent picture of data science and were predominantly written by the editors themselves. Part II then broadens the spectrum by presenting views and insights from diverse authors - some from academia and some from industry, ranging from financial to health and from manufacturing to e-commerce. Each of these chapters describes a fundamental principle, method or tool in data science by analyzing specific use cases and drawing concrete conclusions from them. The case studies presented, and the methods and tools applied, represent the nuts and bolts of data science. Finally, Part III was again written from the perspective of the editors and summarizes the lessons learned that have been distilled from the case studies in Part II. The section can be viewed as a meta-study on data science across a broad range of domains, viewpoints and fields. Moreover, it provides answers to the question of what the mission-critical factors for success in different data science undertakings are. The book targets professionals as well as students of data science: first, practicing data scientists in industry and academia who want to broaden their scope and expand their knowledge by drawing on the authors' combined experience. Second, decision makers in businesses who face the challenge of creating or implementing a data-driven strategy and who want to learn from success stories spanning a range of industries. Third, students of data science who want to understand both the theoretical and practical aspects of data science, vetted by real-world case studies at the intersection of academia and industry. . 
650 0 |a Data mining. 
650 0 |a Machine learning. 
650 0 |a Big data. 
650 0 |a Information storage and retrieval. 
650 1 4 |a Data Mining and Knowledge Discovery.  |0 http://scigraph.springernature.com/things/product-market-codes/I18030 
650 2 4 |a Machine Learning.  |0 http://scigraph.springernature.com/things/product-market-codes/I21010 
650 2 4 |a Big Data/Analytics.  |0 http://scigraph.springernature.com/things/product-market-codes/522070 
650 2 4 |a Information Storage and Retrieval.  |0 http://scigraph.springernature.com/things/product-market-codes/I18032 
700 1 |a Braschler, Martin.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a Stadelmann, Thilo.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a Stockinger, Kurt.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783030118204 
776 0 8 |i Printed edition:  |z 9783030118228 
856 4 0 |u https://doi.org/10.1007/978-3-030-11821-1  |z Full Text via HEAL-Link 
912 |a ZDB-2-SCS 
950 |a Computer Science (Springer-11645)