Domain-Specific Knowledge Graph Construction

The vast amounts of ontologically unstructured information on the Web, including HTML, XML and JSON documents, natural language documents, tweets, blogs, markups, and even structured documents like CSV tables, all contain useful knowledge that can present a tremendous advantage to the Artificial Int...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Kejriwal, Mayank (Συγγραφέας, http://id.loc.gov/vocabulary/relators/aut)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Springer, 2019.
Έκδοση:1st ed. 2019.
Σειρά:SpringerBriefs in Computer Science,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03657nam a2200529 4500
001 978-3-030-12375-8
003 DE-He213
005 20200219233519.0
007 cr nn 008mamaa
008 190304s2019 gw | s |||| 0|eng d
020 |a 9783030123758  |9 978-3-030-12375-8 
024 7 |a 10.1007/978-3-030-12375-8  |2 doi 
040 |d GrThAP 
050 4 |a QA76.9.D343 
072 7 |a UNF  |2 bicssc 
072 7 |a COM021030  |2 bisacsh 
072 7 |a UNF  |2 thema 
072 7 |a UYQE  |2 thema 
082 0 4 |a 006.312  |2 23 
100 1 |a Kejriwal, Mayank.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Domain-Specific Knowledge Graph Construction  |h [electronic resource] /  |c by Mayank Kejriwal. 
250 |a 1st ed. 2019. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2019. 
300 |a XIV, 107 p. 19 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a SpringerBriefs in Computer Science,  |x 2191-5768 
505 0 |a 1. What is a knowledge graph? -- 2. Information Extraction -- 3. Entity Resolution -- 4. Advanced Topic: Knowledge Graph Completion -- 5. Ecosystems . 
520 |a The vast amounts of ontologically unstructured information on the Web, including HTML, XML and JSON documents, natural language documents, tweets, blogs, markups, and even structured documents like CSV tables, all contain useful knowledge that can present a tremendous advantage to the Artificial Intelligence community if extracted robustly, efficiently and semi-automatically as knowledge graphs. Domain-specific Knowledge Graph Construction (KGC) is an active research area that has recently witnessed impressive advances due to machine learning techniques like deep neural networks and word embeddings. This book will synthesize Knowledge Graph Construction over Web Data in an engaging and accessible manner. The book describes a timely topic for both early -and mid-career researchers. Every year, more papers continue to be published on knowledge graph construction, especially for difficult Web domains. This book serves as a useful reference, as well as an accessible but rigorous overview of this body of work. The book presents interdisciplinary connections when possible to engage researchers looking for new ideas or synergies. The book also appeals to practitioners in industry and data scientists since it has chapters on both data collection, as well as a chapter on querying and off-the-shelf implementations. 
650 0 |a Data mining. 
650 0 |a Information storage and retrieval. 
650 0 |a Application software. 
650 0 |a Mathematical statistics. 
650 1 4 |a Data Mining and Knowledge Discovery.  |0 http://scigraph.springernature.com/things/product-market-codes/I18030 
650 2 4 |a Information Storage and Retrieval.  |0 http://scigraph.springernature.com/things/product-market-codes/I18032 
650 2 4 |a Information Systems Applications (incl. Internet).  |0 http://scigraph.springernature.com/things/product-market-codes/I18040 
650 2 4 |a Probability and Statistics in Computer Science.  |0 http://scigraph.springernature.com/things/product-market-codes/I17036 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783030123741 
776 0 8 |i Printed edition:  |z 9783030123765 
830 0 |a SpringerBriefs in Computer Science,  |x 2191-5768 
856 4 0 |u https://doi.org/10.1007/978-3-030-12375-8  |z Full Text via HEAL-Link 
912 |a ZDB-2-SCS 
950 |a Computer Science (Springer-11645)