Turbulent Cascades II Proceedings of the Euromech-ERCOFTAC Colloquium 589 /

Gathering contributions by the most prominent researchers in a highly specialised field, this proceedings volume clarifies selected aspects of the physics of turbulent cascades and their statistical universalities under complex stationary and non-homogeneous conditions. Here, these conditions are in...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Άλλοι συγγραφείς: Gorokhovski, Mikhael (Επιμελητής έκδοσης, http://id.loc.gov/vocabulary/relators/edt), Godeferd, Fabien S. (Επιμελητής έκδοσης, http://id.loc.gov/vocabulary/relators/edt)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Springer, 2019.
Έκδοση:1st ed. 2019.
Σειρά:ERCOFTAC Series, 26
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
Πίνακας περιεχομένων:
  • Part I: Multi-scales Interactions and Non-stationary Cascades: Physics, Models and Tools
  • Chapter 1. Infrared Dynamics and Decay of Helicity in Homogeneous Isotropic Turbulence
  • Chapter 2. Dual Cascades in Axisymmetric Turbulence
  • Chapter 3. A Rigorous Entropy Law for the Turbulent Cascade
  • Chapter 4. Evolution of Local Structure of Turbulent Flow along Pathlines
  • Chapter 5. Renormalized Equations in Turbulent Immiscible Gas-liquid Flows - The Target on LES-formulation
  • Part II: Compressibility ⇔ Turbulence; Turbulence ⇔ Atomization
  • Chapter 6. Energy Transfer and Spectra in Simulations of Two-dimensional Compressible Turbulence
  • Chapter 7. The Exact Solution to the 3D Vortex Compressible Euler Equation and the Clay Millennium Problem Generalization
  • Chapter 8. A Subgrid-Scale Model for Large-Eddy Simulation of Liquid/Gas Interfaces Based on One-Dimensional Turbulence
  • Part III: Effects of Shear and Rotation
  • Chapter 9. Energy Transfer Between Scales and Position in a Turbulent Recirculation Bubble
  • Chapter 10. Nonlinear Transverse Cascade - A Key Factor of Sustenance of Subcritical Turbulence in Shear Flows
  • Chapter 11. Incompressible Homogeneous Buoyancy-Driven Turbulence
  • Chapter 12. Small Scale Statistics of Turbulent fluctuations Close to a Stagnation Point
  • Chapter 13. Anisotropic Turbulent Cascades in Rotating Homogeneous Turbulence
  • Part IV: Turbulence ↔ Scalars
  • Chapter 14. Self-similarity in Slightly Heated Annular Jet with Large Diameter Ratios
  • Part V: Turbulence under "Active" Particles
  • Chapter 16. Parametric Instability and Turbulent Cascades in Space Plasmas
  • Chapter 17. Large-Scale Structures in a Turbulent Fluid with Solid Particles and with Gas Bubbles
  • Chapter 18. Cloud Turbulence and Droplets
  • Chapter 19. Bubble-Induced Turbulence
  • Chapter 20. Non Spherical and Inertial Particles in Couette Turbulent Large Scale Structures
  • Part VI: Particles under the Turbulence
  • Chapter 21. Preferential Concentration of Finite Ssolid Particles in a Swirling von Karman Flow of Water
  • Chapter 22. Relative Dispersion in Direct Cascades of Generalized Two-dimensional Turbulence
  • Chapter 23. Thermally Responsive Particles in Rayleigh-Benard Convection
  • Part VII Interplay of Waves and Turbulence
  • Chapter 24. The Energy Cascade of Surface Wave Turbulence: Toward Identifying the Active Wave Coupling
  • Part VIII: Presence of Free Gas/Liquid Interface
  • Chapter 25. Interactions between Turbulence and Interfaces with Surface Tension
  • Chapter 26. A Dual-Scale Approach for Modeling Turbulent Liquid/Gas Phase Interfaces
  • Part IX: Multi-scales Interactions and Non-stationary Cascades: Physics, Models and Tools
  • Chapter 27. The Turbulence Cascade in Physical Space. Chapter 28. Effects of Regenerating Cycle on Lagrangian Acceleration in Homogeneous Shear Flow
  • Part X: Posters
  • Chapter 29. Precession of Plumes in the Presence of Background Rotation
  • Chapter 30. Flow Structures and Scale Interactions in Stable Atmospheric Boundary Layer Turbulence
  • Chapter 31. Approximating Turbulent and Non-turbulent Events with the Tensor Train Decomposition Method.