Fitting Splines to a Parametric Function

This Brief investigates the intersections that occur between three different areas of study that normally would not touch each other: ODF, spline theory, and topology. The Least Squares Orthogonal Distance Fitting (ODF) method has become the standard technique used to develop mathematical models of...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Penner, Alvin (Συγγραφέας, http://id.loc.gov/vocabulary/relators/aut)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Springer, 2019.
Έκδοση:1st ed. 2019.
Σειρά:SpringerBriefs in Computer Science,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03689nam a2200469 4500
001 978-3-030-12551-6
003 DE-He213
005 20191028171546.0
007 cr nn 008mamaa
008 190223s2019 gw | s |||| 0|eng d
020 |a 9783030125516  |9 978-3-030-12551-6 
024 7 |a 10.1007/978-3-030-12551-6  |2 doi 
040 |d GrThAP 
050 4 |a T385 
072 7 |a UML  |2 bicssc 
072 7 |a COM012000  |2 bisacsh 
072 7 |a UML  |2 thema 
082 0 4 |a 006.6  |2 23 
100 1 |a Penner, Alvin.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Fitting Splines to a Parametric Function  |h [electronic resource] /  |c by Alvin Penner. 
250 |a 1st ed. 2019. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2019. 
300 |a XII, 79 p. 32 illus., 21 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a SpringerBriefs in Computer Science,  |x 2191-5768 
505 0 |a 1 Introduction -- 2 Least Squares Orthogonal Distance -- 3 General Properties of Splines -- 4 ODF using a cubic Bézier -- 5 Topology of Merges/Crossovers -- 6 ODF using a 5-Point B-spline -- 7 ODF using a 6-Point B-spline -- 8 ODF using a quartic Bézier -- 9 ODF using a Beta2-spline -- 10 ODF using a Beta1-spline -- 11 Conclusions. 
520 |a This Brief investigates the intersections that occur between three different areas of study that normally would not touch each other: ODF, spline theory, and topology. The Least Squares Orthogonal Distance Fitting (ODF) method has become the standard technique used to develop mathematical models of the physical shapes of objects, due to the fact that it produces a fitted result that is invariant with respect to the size and orientation of the object. It is normally used to produce a single optimum fit to a specific object; this work focuses instead on the issue of whether the fit responds continuously as the shape of the object changes. The theory of splines develops user-friendly ways of manipulating six different splines to fit the shape of a simple family of epiTrochoid curves: two types of Bézier curve, two uniform B-splines, and two Beta-splines. This work will focus on issues that arise when mathematically optimizing the fit. There are typically multiple solutions to the ODF method, and the number of solutions can often change as the object changes shape, so two topological questions immediately arise: are there rules that can be applied concerning the relative number of local minima and saddle points, and are there different mechanisms available by which solutions can either merge and disappear, or cross over each other and interchange roles. The author proposes some simple rules which can be used to determine if a given set of solutions is internally consistent in the sense that it has the appropriate number of each type of solution. 
650 0 |a Computer graphics. 
650 0 |a Optical data processing. 
650 1 4 |a Computer Graphics.  |0 http://scigraph.springernature.com/things/product-market-codes/I22013 
650 2 4 |a Image Processing and Computer Vision.  |0 http://scigraph.springernature.com/things/product-market-codes/I22021 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783030125509 
776 0 8 |i Printed edition:  |z 9783030125523 
830 0 |a SpringerBriefs in Computer Science,  |x 2191-5768 
856 4 0 |u https://doi.org/10.1007/978-3-030-12551-6  |z Full Text via HEAL-Link 
912 |a ZDB-2-SCS 
950 |a Computer Science (Springer-11645)