Guide to Mobile Data Analytics in Refugee Scenarios The 'Data for Refugees Challenge' Study /

After the start of the Syrian Civil War in 2011-12, increasing numbers of civilians sought refuge in neighboring countries. By May 2017, Turkey had received over 3 million refugees - the largest r efugee population in the world. Some lived in government-run camps near the Syrian border, but many hav...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Άλλοι συγγραφείς: Salah, Albert Ali (Επιμελητής έκδοσης, http://id.loc.gov/vocabulary/relators/edt), Pentland, Alex (Επιμελητής έκδοσης, http://id.loc.gov/vocabulary/relators/edt), Lepri, Bruno (Επιμελητής έκδοσης, http://id.loc.gov/vocabulary/relators/edt), Letouzé, Emmanuel (Επιμελητής έκδοσης, http://id.loc.gov/vocabulary/relators/edt)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Springer, 2019.
Έκδοση:1st ed. 2019.
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 06800nam a2200589 4500
001 978-3-030-12554-7
003 DE-He213
005 20191026062640.0
007 cr nn 008mamaa
008 190906s2019 gw | s |||| 0|eng d
020 |a 9783030125547  |9 978-3-030-12554-7 
024 7 |a 10.1007/978-3-030-12554-7  |2 doi 
040 |d GrThAP 
050 4 |a QA76.9.D343 
072 7 |a UNF  |2 bicssc 
072 7 |a COM021030  |2 bisacsh 
072 7 |a UNF  |2 thema 
072 7 |a UYQE  |2 thema 
082 0 4 |a 006.312  |2 23 
245 1 0 |a Guide to Mobile Data Analytics in Refugee Scenarios  |h [electronic resource] :  |b The 'Data for Refugees Challenge' Study /  |c edited by Albert Ali Salah, Alex Pentland, Bruno Lepri, Emmanuel Letouzé. 
250 |a 1st ed. 2019. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2019. 
300 |a XVI, 500 p. 169 illus., 149 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a Chapter 1. Introduction to the Data for Refugees Challenge on Mobility of Syrian Refugees in Turkey -- Chapter 2. Call Detail Records to Obtain Estimates of Forcibly Displaced Populations -- Chapter 3. Measuring Fine-Grained Multidimensional Integration Using Mobile Phone Metadata: The Case of Syrian Refugees in Turkey -- Chapter 4. Integration of Syrian Refugees: Insights from D4R, Media Events and Housing Market Data -- Chapter 5. Mobile Phone Data for Humanitarian Purposes: Challenges and Opportunities -- Chapter 6. Improve Education Opportunities for Better Integration of Syrian Refugees in Turkey -- Chapter 7. Measuring and Mitigating Behavioural Segregation as an Optimisation Problem -- Chapter 8. The Use of Big Mobile Data to Gain Multi-layered Insights for Syrian Refugee Crisis -- Chapter 9. Characterizing the Mobile Phone Use Patterns of Refugee Hosting Provinces in Turkey -- Chapter 10. Towards an Understanding of Refugee Segregation, Isolation, Homophily and Ultimately Integration in Turkey Using Call Detail Records -- Chapter 11. Using Call Data and Stigmergic Similarity to Assess the Integration of Syrian Refugees in Turkey Coding Bootcamps for Refugees -- Chapter 12. Quantified Understanding of Syrian Refugee Integration in Turkey -- Chapter 13. Refugees in Undeclared Employment - A Case Study in Turkey -- Chapter 14. Assessing Refugees' Onward Mobility with Mobile Phone Data - A Case Study of (Syrian) Refugees in Turkey -- Chapter 15. Optimizing the Access to Healthcare Services in Dense Refugee Hosting Urban Areas: A Case for Istanbul -- Chapter 16. A Review of Syrian Refugee Integration in Turkey: Evidence from Call Detail Records -- Chapter 17. Conclusions and Lessons Learned. 
520 |a After the start of the Syrian Civil War in 2011-12, increasing numbers of civilians sought refuge in neighboring countries. By May 2017, Turkey had received over 3 million refugees - the largest r efugee population in the world. Some lived in government-run camps near the Syrian border, but many have moved to cities looking for work and better living conditions. They faced problems of integration, income, welfare, employment, health, education, language, social tension, and discrimination. In order to develop sound policies to solve these interlinked problems, a good understanding of refugee dynamics isnecessary. This book summarizes the most important findings of the Data for Refugees (D4R) Challenge, which was a non-profit project initiated to improve the conditions of the Syrian refugees in Turkey by providing a database for the scientific community to enable research on urgent problems concerning refugees. The database, based on anonymized mobile call detail records (CDRs) of phone calls and SMS messages of one million Turk Telekom customers, indicates the broad activity and mobility patterns of refugees and citizens in Turkey for the year 1 January to 31 December 2017. Over 100 teams from around the globe applied to take part in the challenge, and 61 teams were granted access to the data. This book describes the challenge, and presents selected and revised project reports on the five major themes: unemployment, health, education, social integration, and safety, respectively. These are complemented by additional invited chapters describing related projects from international governmental organizations, technological infrastructure, as well as ethical aspects. The last chapter includes policy recommendations, based on the lessons learned. The book will serve as a guideline for creating innovative data-centered collaborations between industry, academia, government, and non-profit humanitarian agencies to deal with complex problems in refugee scenarios. It illustrates the possibilities of big data analytics in coping with refugee crises and humanitarian responses, by showcasing innovative approaches drawing on multiple data sources, information visualization, pattern analysis, and statistical analysis.It will also provide researchers and students working with mobility data with an excellent coverage across data science, economics, sociology, urban computing, education, migration studies, and more. 
650 0 |a Data mining. 
650 0 |a Big data. 
650 0 |a Application software. 
650 0 |a Social sciences-Data processing. 
650 0 |a Social sciences-Computer programs. 
650 0 |a Emigration and immigration. 
650 1 4 |a Data Mining and Knowledge Discovery.  |0 http://scigraph.springernature.com/things/product-market-codes/I18030 
650 2 4 |a Big Data.  |0 http://scigraph.springernature.com/things/product-market-codes/I29120 
650 2 4 |a Computer Appl. in Social and Behavioral Sciences.  |0 http://scigraph.springernature.com/things/product-market-codes/I23028 
650 2 4 |a Computational Social Sciences.  |0 http://scigraph.springernature.com/things/product-market-codes/X34000 
650 2 4 |a Migration.  |0 http://scigraph.springernature.com/things/product-market-codes/X24000 
700 1 |a Salah, Albert Ali.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a Pentland, Alex.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a Lepri, Bruno.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a Letouzé, Emmanuel.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783030125530 
776 0 8 |i Printed edition:  |z 9783030125554 
776 0 8 |i Printed edition:  |z 9783030125561 
856 4 0 |u https://doi.org/10.1007/978-3-030-12554-7  |z Full Text via HEAL-Link 
912 |a ZDB-2-SCS 
950 |a Computer Science (Springer-11645)