Asymptotic Nonparametric Statistical Analysis of Stationary Time Series

Stationarity is a very general, qualitative assumption, that can be assessed on the basis of application specifics. It is thus a rather attractive assumption to base statistical analysis on, especially for problems for which less general qualitative assumptions, such as independence or finite memory...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Ryabko, Daniil (Συγγραφέας, http://id.loc.gov/vocabulary/relators/aut)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Springer, 2019.
Έκδοση:1st ed. 2019.
Σειρά:SpringerBriefs in Computer Science,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03759nam a2200481 4500
001 978-3-030-12564-6
003 DE-He213
005 20200225232552.0
007 cr nn 008mamaa
008 190307s2019 gw | s |||| 0|eng d
020 |a 9783030125646  |9 978-3-030-12564-6 
024 7 |a 10.1007/978-3-030-12564-6  |2 doi 
040 |d GrThAP 
050 4 |a Q334-342 
072 7 |a UYQ  |2 bicssc 
072 7 |a COM004000  |2 bisacsh 
072 7 |a UYQ  |2 thema 
082 0 4 |a 006.3  |2 23 
100 1 |a Ryabko, Daniil.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Asymptotic Nonparametric Statistical Analysis of Stationary Time Series  |h [electronic resource] /  |c by Daniil Ryabko. 
250 |a 1st ed. 2019. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2019. 
300 |a VIII, 77 p. 4 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a SpringerBriefs in Computer Science,  |x 2191-5768 
505 0 |a 1 Introduction -- 2 Preliminaries -- 3 Basic inference -- Clustering and change-point problems -- 5 Hypothesis Testing -- 6 Generalizations -- References. 
520 |a Stationarity is a very general, qualitative assumption, that can be assessed on the basis of application specifics. It is thus a rather attractive assumption to base statistical analysis on, especially for problems for which less general qualitative assumptions, such as independence or finite memory, clearly fail. However, it has long been considered too general to be able to make statistical inference. One of the reasons for this is that rates of convergence, even of frequencies to the mean, are not available under this assumption alone. Recently, it has been shown that, while some natural and simple problems, such as homogeneity, are indeed provably impossible to solve if one only assumes that the data is stationary (or stationary ergodic), many others can be solved with rather simple and intuitive algorithms. The latter include clustering and change point estimation among others. In this volume these results are summarize. The emphasis is on asymptotic consistency, since this the strongest property one can obtain assuming stationarity alone. While for most of the problem for which a solution is found this solution is algorithmically realizable, the main objective in this area of research, the objective which is only partially attained, is to understand what is possible and what is not possible to do for stationary time series. The considered problems include homogeneity testing (the so-called two sample problem), clustering with respect to distribution, clustering with respect to independence, change point estimation, identity testing, and the general problem of composite hypotheses testing. For the latter problem, a topological criterion for the existence of a consistent test is presented. In addition, a number of open problems is presented. 
650 0 |a Artificial intelligence. 
650 0 |a Coding theory. 
650 0 |a Information theory. 
650 1 4 |a Artificial Intelligence.  |0 http://scigraph.springernature.com/things/product-market-codes/I21000 
650 2 4 |a Coding and Information Theory.  |0 http://scigraph.springernature.com/things/product-market-codes/I15041 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783030125639 
776 0 8 |i Printed edition:  |z 9783030125653 
830 0 |a SpringerBriefs in Computer Science,  |x 2191-5768 
856 4 0 |u https://doi.org/10.1007/978-3-030-12564-6  |z Full Text via HEAL-Link 
912 |a ZDB-2-SCS 
950 |a Computer Science (Springer-11645)