Metaheuristic Algorithms for Image Segmentation: Theory and Applications

This book presents a study of the most important methods of image segmentation and how they are extended and improved using metaheuristic algorithms. The segmentation approaches selected have been extensively applied to the task of segmentation (especially in thresholding), and have also been implem...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Oliva, Diego (Συγγραφέας, http://id.loc.gov/vocabulary/relators/aut), Abd Elaziz, Mohamed (http://id.loc.gov/vocabulary/relators/aut), Hinojosa, Salvador (http://id.loc.gov/vocabulary/relators/aut)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Springer, 2019.
Έκδοση:1st ed. 2019.
Σειρά:Studies in Computational Intelligence, 825
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 04501nam a2200553 4500
001 978-3-030-12931-6
003 DE-He213
005 20191220125326.0
007 cr nn 008mamaa
008 190302s2019 gw | s |||| 0|eng d
020 |a 9783030129316  |9 978-3-030-12931-6 
024 7 |a 10.1007/978-3-030-12931-6  |2 doi 
040 |d GrThAP 
050 4 |a Q342 
072 7 |a UYQ  |2 bicssc 
072 7 |a TEC009000  |2 bisacsh 
072 7 |a UYQ  |2 thema 
082 0 4 |a 006.3  |2 23 
100 1 |a Oliva, Diego.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Metaheuristic Algorithms for Image Segmentation: Theory and Applications  |h [electronic resource] /  |c by Diego Oliva, Mohamed Abd Elaziz, Salvador Hinojosa. 
250 |a 1st ed. 2019. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2019. 
300 |a XV, 226 p. 58 illus., 43 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Studies in Computational Intelligence,  |x 1860-949X ;  |v 825 
505 0 |a Introduction -- Optimization -- Metaheuristic optimization -- Image processing -- Image Segmentation using metaheuristics -- Multilevel thresholding for image segmentation based on metaheuristic Algorithms -- Otsu's between class variance and the tree seed algorithm -- Image segmentation using Kapur's entropy and a hybrid optimization algorithm -- Tsallis entropy for image thresholding -- Image segmentation with minimum cross entropy -- Fuzzy entropy approaches for image segmentation -- Image segmentation by gaussian mixture -- Image segmentation as a multiobjective optimization problem -- Clustering algorithms for image segmentation -- Contextual information in image thresholding. 
520 |a This book presents a study of the most important methods of image segmentation and how they are extended and improved using metaheuristic algorithms. The segmentation approaches selected have been extensively applied to the task of segmentation (especially in thresholding), and have also been implemented using various metaheuristics and hybridization techniques leading to a broader understanding of how image segmentation problems can be solved from an optimization perspective. The field of image processing is constantly changing due to the extensive integration of cameras in devices; for example, smart phones and cars now have embedded cameras. The images have to be accurately analyzed, and crucial pre-processing steps, like image segmentation, and artificial intelligence, including metaheuristics, are applied in the automatic analysis of digital images. Metaheuristic algorithms have also been used in various fields of science and technology as the demand for new methods designed to solve complex optimization problems increases. This didactic book is primarily intended for undergraduate and postgraduate students of science, engineering, and computational mathematics. It is also suitable for courses such as artificial intelligence, advanced image processing, and computational intelligence. The material is also useful for researches in the fields of evolutionary computation, artificial intelligence, and image processing. 
650 0 |a Computational intelligence. 
650 0 |a Artificial intelligence. 
650 0 |a Signal processing. 
650 0 |a Image processing. 
650 0 |a Speech processing systems. 
650 1 4 |a Computational Intelligence.  |0 http://scigraph.springernature.com/things/product-market-codes/T11014 
650 2 4 |a Artificial Intelligence.  |0 http://scigraph.springernature.com/things/product-market-codes/I21000 
650 2 4 |a Signal, Image and Speech Processing.  |0 http://scigraph.springernature.com/things/product-market-codes/T24051 
700 1 |a Abd Elaziz, Mohamed.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
700 1 |a Hinojosa, Salvador.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783030129309 
776 0 8 |i Printed edition:  |z 9783030129323 
776 0 8 |i Printed edition:  |z 9783030129330 
830 0 |a Studies in Computational Intelligence,  |x 1860-949X ;  |v 825 
856 4 0 |u https://doi.org/10.1007/978-3-030-12931-6  |z Full Text via HEAL-Link 
912 |a ZDB-2-INR 
950 |a Intelligent Technologies and Robotics (Springer-42732)