Moduli of K-stable Varieties
This volume is an outcome of the workshop "Moduli of K-stable Varieties", which was held in Rome, Italy in 2017. The content focuses on the existence problem for canonical Kähler metrics and links to the algebro-geometric notion of K-stability. The book includes both surveys on this probl...
Συγγραφή απο Οργανισμό/Αρχή: | |
---|---|
Άλλοι συγγραφείς: | , , |
Μορφή: | Ηλεκτρονική πηγή Ηλ. βιβλίο |
Γλώσσα: | English |
Έκδοση: |
Cham :
Springer International Publishing : Imprint: Springer,
2019.
|
Έκδοση: | 1st ed. 2019. |
Σειρά: | Springer INdAM Series,
31 |
Θέματα: | |
Διαθέσιμο Online: | Full Text via HEAL-Link |
Πίνακας περιεχομένων:
- 1 F. Ambro and J. Kollár, Minimal Models of semi-log-canonical pairs
- 2 G. Codogni and J. Stoppa, Torus Equivariant K-stability
- 3 K. Fujita, Notes on K-semistability of topic polarized surfaces
- 4 E. Legendre, A note on extremal toric almost Kähler metrics
- 5 Y. Odaka, Tropical geometric compactification of moduli, I - M_g case
- 6 Z. Sjöström Dyrefelt, A partial comparison of stability notions in Kähler geometry
- 7 C. Spotti, Kähler-Einstein metrics via moduli continuity
- 8 X. Wang, GIT stability, K-stability and moduli space of Fano varieties.