A New Hypothesis on the Anisotropic Reynolds Stress Tensor for Turbulent Flows Volume I: Theoretical Background and Development of an Anisotropic Hybrid k-omega Shear-Stress Transport/Stochastic Turbulence Model /

This book gives a mathematical insight--including intermediate derivation steps--into engineering physics and turbulence modeling related to an anisotropic modification to the Boussinesq hypothesis (deformation theory) coupled with the similarity theory of velocity fluctuations. Through mathematical...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Könözsy, László (Συγγραφέας, http://id.loc.gov/vocabulary/relators/aut)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Springer, 2019.
Έκδοση:1st ed. 2019.
Σειρά:Fluid Mechanics and Its Applications, 120
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 04785nam a2200529 4500
001 978-3-030-13543-0
003 DE-He213
005 20191026232439.0
007 cr nn 008mamaa
008 190226s2019 gw | s |||| 0|eng d
020 |a 9783030135430  |9 978-3-030-13543-0 
024 7 |a 10.1007/978-3-030-13543-0  |2 doi 
040 |d GrThAP 
050 4 |a TA357-359 
072 7 |a TGMF  |2 bicssc 
072 7 |a TEC009070  |2 bisacsh 
072 7 |a TGMF  |2 thema 
082 0 4 |a 620.1064  |2 23 
100 1 |a Könözsy, László.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 2 |a A New Hypothesis on the Anisotropic Reynolds Stress Tensor for Turbulent Flows  |h [electronic resource] :  |b Volume I: Theoretical Background and Development of an Anisotropic Hybrid k-omega Shear-Stress Transport/Stochastic Turbulence Model /  |c by László Könözsy. 
250 |a 1st ed. 2019. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2019. 
300 |a XVII, 141 p. 5 illus., 4 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Fluid Mechanics and Its Applications,  |x 0926-5112 ;  |v 120 
505 0 |a 1 Introduction -- 1.1 Historical Background and Literature Review -- 1.2 Governing Equations of Incompressible Turbulent Flows -- 1.3 Summary -- References -- 2 Theoretical Principles and Galilean Invariance -- 2.1 Introduction -- 2.2 Basic Principles of Advanced Turbulence Modelling -- 2.3 Summary -- References -- 3 The k-w Shear-Stress Transport (SST) Turbulence Model -- 3.1 Introduction -- 3.2 Mathematical Derivations -- 3.3 Governing Equations of the k-w SST Turbulence Model -- 3.4 Summary -- References -- 4 Three-Dimensional Anisotropic Similarity Theory of Turbulent Velocity Fluctuations -- 4.1 Introduction -- 4.2 Similarity Theory of Turbulent Oscillatory Motions -- 4.3 Summary -- References -- 5 A New Hypothesis on the Anisotropic Reynolds Stress Tensor -- 5.1 Introduction -- 5.2 The Anisotropic Reynolds Stress Tensor -- 5.3 An Anisotropic Hybrid k-w SST/STM Closure Model for Incompressible Flows -- 5.4 Governing Equations of the Anisotropic Hybrid k-w SST/STM Closure Model -- 5.5 On the Implementation of the Anisotropic Hybrid k-w SST/STM Turbulence Model -- 5.6 Summary -- References -- Appendices: Additional Mathematical Derivations -- A.1 The Unit Base Vectors of the Fluctuating OrthogonalCoordinate System -- A.2 Galilean Invariance of the Unsteady Fluctuating VorticityTransport Equation -- A.3 The Deviatoric Part of the Similarity Tensor. 
520 |a This book gives a mathematical insight--including intermediate derivation steps--into engineering physics and turbulence modeling related to an anisotropic modification to the Boussinesq hypothesis (deformation theory) coupled with the similarity theory of velocity fluctuations. Through mathematical derivations and their explanations, the reader will be able to understand new theoretical concepts quickly, including how to put a new hypothesis on the anisotropic Reynolds stress tensor into engineering practice. The anisotropic modification to the eddy viscosity hypothesis is in the center of research interest, however, the unification of the deformation theory and the anisotropic similarity theory of turbulent velocity fluctuations is still missing from the literature. This book brings a mathematically challenging subject closer to graduate students and researchers who are developing the next generation of anisotropic turbulence models. Indispensable for graduate students, researchers and scientists in fluid mechanics and mechanical engineering. 
650 0 |a Fluid mechanics. 
650 0 |a Fluids. 
650 0 |a Computer mathematics. 
650 0 |a Probabilities. 
650 1 4 |a Engineering Fluid Dynamics.  |0 http://scigraph.springernature.com/things/product-market-codes/T15044 
650 2 4 |a Fluid- and Aerodynamics.  |0 http://scigraph.springernature.com/things/product-market-codes/P21026 
650 2 4 |a Computational Science and Engineering.  |0 http://scigraph.springernature.com/things/product-market-codes/M14026 
650 2 4 |a Probability Theory and Stochastic Processes.  |0 http://scigraph.springernature.com/things/product-market-codes/M27004 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783030135423 
776 0 8 |i Printed edition:  |z 9783030135447 
776 0 8 |i Printed edition:  |z 9783030135454 
830 0 |a Fluid Mechanics and Its Applications,  |x 0926-5112 ;  |v 120 
856 4 0 |u https://doi.org/10.1007/978-3-030-13543-0  |z Full Text via HEAL-Link 
912 |a ZDB-2-ENG 
950 |a Engineering (Springer-11647)