A New Hypothesis on the Anisotropic Reynolds Stress Tensor for Turbulent Flows Volume I: Theoretical Background and Development of an Anisotropic Hybrid k-omega Shear-Stress Transport/Stochastic Turbulence Model /
This book gives a mathematical insight--including intermediate derivation steps--into engineering physics and turbulence modeling related to an anisotropic modification to the Boussinesq hypothesis (deformation theory) coupled with the similarity theory of velocity fluctuations. Through mathematical...
Κύριος συγγραφέας: | |
---|---|
Συγγραφή απο Οργανισμό/Αρχή: | |
Μορφή: | Ηλεκτρονική πηγή Ηλ. βιβλίο |
Γλώσσα: | English |
Έκδοση: |
Cham :
Springer International Publishing : Imprint: Springer,
2019.
|
Έκδοση: | 1st ed. 2019. |
Σειρά: | Fluid Mechanics and Its Applications,
120 |
Θέματα: | |
Διαθέσιμο Online: | Full Text via HEAL-Link |
Πίνακας περιεχομένων:
- 1 Introduction
- 1.1 Historical Background and Literature Review
- 1.2 Governing Equations of Incompressible Turbulent Flows
- 1.3 Summary
- References
- 2 Theoretical Principles and Galilean Invariance
- 2.1 Introduction
- 2.2 Basic Principles of Advanced Turbulence Modelling
- 2.3 Summary
- References
- 3 The k-w Shear-Stress Transport (SST) Turbulence Model
- 3.1 Introduction
- 3.2 Mathematical Derivations
- 3.3 Governing Equations of the k-w SST Turbulence Model
- 3.4 Summary
- References
- 4 Three-Dimensional Anisotropic Similarity Theory of Turbulent Velocity Fluctuations
- 4.1 Introduction
- 4.2 Similarity Theory of Turbulent Oscillatory Motions
- 4.3 Summary
- References
- 5 A New Hypothesis on the Anisotropic Reynolds Stress Tensor
- 5.1 Introduction
- 5.2 The Anisotropic Reynolds Stress Tensor
- 5.3 An Anisotropic Hybrid k-w SST/STM Closure Model for Incompressible Flows
- 5.4 Governing Equations of the Anisotropic Hybrid k-w SST/STM Closure Model
- 5.5 On the Implementation of the Anisotropic Hybrid k-w SST/STM Turbulence Model
- 5.6 Summary
- References
- Appendices: Additional Mathematical Derivations
- A.1 The Unit Base Vectors of the Fluctuating OrthogonalCoordinate System
- A.2 Galilean Invariance of the Unsteady Fluctuating VorticityTransport Equation
- A.3 The Deviatoric Part of the Similarity Tensor.