A New Hypothesis on the Anisotropic Reynolds Stress Tensor for Turbulent Flows Volume I: Theoretical Background and Development of an Anisotropic Hybrid k-omega Shear-Stress Transport/Stochastic Turbulence Model /

This book gives a mathematical insight--including intermediate derivation steps--into engineering physics and turbulence modeling related to an anisotropic modification to the Boussinesq hypothesis (deformation theory) coupled with the similarity theory of velocity fluctuations. Through mathematical...

Full description

Bibliographic Details
Main Author: Könözsy, László (Author, http://id.loc.gov/vocabulary/relators/aut)
Corporate Author: SpringerLink (Online service)
Format: Electronic eBook
Language:English
Published: Cham : Springer International Publishing : Imprint: Springer, 2019.
Edition:1st ed. 2019.
Series:Fluid Mechanics and Its Applications, 120
Subjects:
Online Access:Full Text via HEAL-Link
Table of Contents:
  • 1 Introduction
  • 1.1 Historical Background and Literature Review
  • 1.2 Governing Equations of Incompressible Turbulent Flows
  • 1.3 Summary
  • References
  • 2 Theoretical Principles and Galilean Invariance
  • 2.1 Introduction
  • 2.2 Basic Principles of Advanced Turbulence Modelling
  • 2.3 Summary
  • References
  • 3 The k-w Shear-Stress Transport (SST) Turbulence Model
  • 3.1 Introduction
  • 3.2 Mathematical Derivations
  • 3.3 Governing Equations of the k-w SST Turbulence Model
  • 3.4 Summary
  • References
  • 4 Three-Dimensional Anisotropic Similarity Theory of Turbulent Velocity Fluctuations
  • 4.1 Introduction
  • 4.2 Similarity Theory of Turbulent Oscillatory Motions
  • 4.3 Summary
  • References
  • 5 A New Hypothesis on the Anisotropic Reynolds Stress Tensor
  • 5.1 Introduction
  • 5.2 The Anisotropic Reynolds Stress Tensor
  • 5.3 An Anisotropic Hybrid k-w SST/STM Closure Model for Incompressible Flows
  • 5.4 Governing Equations of the Anisotropic Hybrid k-w SST/STM Closure Model
  • 5.5 On the Implementation of the Anisotropic Hybrid k-w SST/STM Turbulence Model
  • 5.6 Summary
  • References
  • Appendices: Additional Mathematical Derivations
  • A.1 The Unit Base Vectors of the Fluctuating OrthogonalCoordinate System
  • A.2 Galilean Invariance of the Unsteady Fluctuating VorticityTransport Equation
  • A.3 The Deviatoric Part of the Similarity Tensor.