Analyzing Dependent Data with Vine Copulas A Practical Guide With R /

This textbook provides a step-by-step introduction to the class of vine copulas, their statistical inference and applications. It focuses on statistical estimation and selection methods for vine copulas in data applications. These flexible copula models can successfully accommodate any form of tail...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Czado, Claudia (Συγγραφέας, http://id.loc.gov/vocabulary/relators/aut)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Springer, 2019.
Έκδοση:1st ed. 2019.
Σειρά:Lecture Notes in Statistics, 222
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 04321nam a2200517 4500
001 978-3-030-13785-4
003 DE-He213
005 20191026172423.0
007 cr nn 008mamaa
008 190514s2019 gw | s |||| 0|eng d
020 |a 9783030137854  |9 978-3-030-13785-4 
024 7 |a 10.1007/978-3-030-13785-4  |2 doi 
040 |d GrThAP 
050 4 |a QA276-280 
072 7 |a PBT  |2 bicssc 
072 7 |a MAT029000  |2 bisacsh 
072 7 |a PBT  |2 thema 
082 0 4 |a 519.5  |2 23 
100 1 |a Czado, Claudia.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Analyzing Dependent Data with Vine Copulas  |h [electronic resource] :  |b A Practical Guide With R /  |c by Claudia Czado. 
250 |a 1st ed. 2019. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2019. 
300 |a XXIX, 242 p. 70 illus., 25 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Lecture Notes in Statistics,  |x 0930-0325 ;  |v 222 
505 0 |a Preface -- Multivariate Distributions and Copulas -- Dependence Measures -- Bivariate Copula Classes, Their Visualization and Estimation -- Pair Copula Decompositions and Constructions -- Regular Vines -- Simulating Regular Vine Copulas and Distributions -- Parameter Estimation in Regular Vine Copulas -- Selection of Regular Vine Copula Models -- Comparing Regular Vine Copula Models -- Case Study: Dependence Among German DAX Stocks -- Recent Developments in Vine Copula Based Modeling -- Indices. 
520 |a This textbook provides a step-by-step introduction to the class of vine copulas, their statistical inference and applications. It focuses on statistical estimation and selection methods for vine copulas in data applications. These flexible copula models can successfully accommodate any form of tail dependence and are vital to many applications in finance, insurance, hydrology, marketing, engineering, chemistry, aviation, climatology and health. The book explains the pair-copula construction principles underlying these statistical models and discusses how to perform model selection and inference. It also derives simulation algorithms and presents real-world examples to illustrate the methodological concepts. The book includes numerous exercises that facilitate and deepen readers' understanding, and demonstrates how the R package VineCopula can be used to explore and build statistical dependence models from scratch. In closing, the book provides insights into recent developments and open research questions in vine copula based modeling. The book is intended for students as well as statisticians, data analysts and any other quantitatively oriented researchers who are new to the field of vine copulas. Accordingly, it provides the necessary background in multivariate statistics and copula theory for exploratory data tools, so that readers only need a basic grasp of statistics and probability. 
650 0 |a Statistics . 
650 0 |a Big data. 
650 1 4 |a Statistical Theory and Methods.  |0 http://scigraph.springernature.com/things/product-market-codes/S11001 
650 2 4 |a Statistics for Business, Management, Economics, Finance, Insurance.  |0 http://scigraph.springernature.com/things/product-market-codes/S17010 
650 2 4 |a Statistics for Life Sciences, Medicine, Health Sciences.  |0 http://scigraph.springernature.com/things/product-market-codes/S17030 
650 2 4 |a Statistics for Engineering, Physics, Computer Science, Chemistry and Earth Sciences.  |0 http://scigraph.springernature.com/things/product-market-codes/S17020 
650 2 4 |a Big Data/Analytics.  |0 http://scigraph.springernature.com/things/product-market-codes/522070 
650 2 4 |a Statistics and Computing/Statistics Programs.  |0 http://scigraph.springernature.com/things/product-market-codes/S12008 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783030137847 
776 0 8 |i Printed edition:  |z 9783030137861 
830 0 |a Lecture Notes in Statistics,  |x 0930-0325 ;  |v 222 
856 4 0 |u https://doi.org/10.1007/978-3-030-13785-4  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)