Deep Learning and Convolutional Neural Networks for Medical Imaging and Clinical Informatics

This book reviews the state of the art in deep learning approaches to high-performance robust disease detection, robust and accurate organ segmentation in medical image computing (radiological and pathological imaging modalities), and the construction and mining of large-scale radiology databases. I...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Άλλοι συγγραφείς: Lu, Le (Επιμελητής έκδοσης, http://id.loc.gov/vocabulary/relators/edt), Wang, Xiaosong (Επιμελητής έκδοσης, http://id.loc.gov/vocabulary/relators/edt), Carneiro, Gustavo (Επιμελητής έκδοσης, http://id.loc.gov/vocabulary/relators/edt), Yang, Lin (Επιμελητής έκδοσης, http://id.loc.gov/vocabulary/relators/edt)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Springer, 2019.
Έκδοση:1st ed. 2019.
Σειρά:Advances in Computer Vision and Pattern Recognition,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
Πίνακας περιεχομένων:
  • Chapter 1. Clinical Report Guided Multi-Sieving Deep Learning for Retinal Microaneurysm Detection
  • Chapter 2. Optic Disc and Cup Segmentation Based on Multi-label Deep Network for Fundus Glaucoma Screening
  • Chapter 3. Thoracic Disease Identification and Localization with Limited Supervision
  • Chapter 4. ChestX-ray8: Hospital-scale Chest X-ray Database and Benchmarks on Weakly-Supervised Classification and Localization of Common Thorax Diseases
  • Chapter 5. TieNet: Text-Image Embedding Network for Common Thorax Disease Classification and Reporting in Chest X-rays
  • Chapter 6. Deep Lesion Graph in the Wild: Relationship Learning and Organization of Significant Radiology Image Findings in a Diverse Large-scale Lesion Database
  • Chapter 7. Deep Reinforcement Learning based Attention to Detect Breast Lesions from DCE-MRI
  • Chapter 8. Deep Convolutional Hashing for Low Dimensional Binary Embedding of Histopathological Images
  • Chapter 9. Pancreas Segmentation in CT and MRI Images via Domain Specific Network Designing and Recurrent Neural Contextual Learning
  • Chapter 10. Spatial Clockwork Recurrent Neural Network for Muscle Perimysium Segmentation
  • Chapter 11. Pancreas
  • Chapter 12. Multi-Organ
  • Chapter 13. Convolutional Invasion and Expansion Networks for Tumor Growth Prediction
  • Chapter 14. Cross-Modality Synthesis in Magnetic Resonance Imaging
  • Chapter 15. Image Quality Assessment for Population Cardiac MRI
  • Chapter 16. Low Dose CT Image Denoising Using a Generative Adversarial Network with Wasserstein Distance and Perceptual Loss
  • Chapter 17. Unsupervised Cross-Modality Domain Adaptation of ConvNets for Biomedical Image Segmentations with Adversarial Loss
  • Chapter 18. Automatic Vertebra Labeling in Large-Scale Medical Images using Deep Image-to-Image Network with Message Passing and Sparsity Regularization
  • Chapter 19. 3D Anisotropic Hybrid Network: Transferring Convolutional Features from 2D Images to 3D Anisotropic Volumes
  • Chapter 20. Multi-Agent Learning for Robust Image Registration
  • Chapter 21. Deep Learning in Magnetic Resonance Imaging of Cardiac Function
  • Chapter 22. Automatic Vertebra Labeling in Large-Scale Medical Images using Deep Image-to-Image Network with Message Passing and Sparsity Regularization
  • Chapter 23. Deep Learning on Functional Connectivity of Brain: Are We There Yet?.