Applying Predictive Analytics Finding Value in Data /

This textbook presents a practical approach to predictive analytics for classroom learning. It focuses on using analytics to solve business problems and compares several different modeling techniques, all explained from examples using the SAS Enterprise Miner software. The authors demystify complex...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: McCarthy, Richard V. (Συγγραφέας, http://id.loc.gov/vocabulary/relators/aut), McCarthy, Mary M. (http://id.loc.gov/vocabulary/relators/aut), Ceccucci, Wendy (http://id.loc.gov/vocabulary/relators/aut), Halawi, Leila (http://id.loc.gov/vocabulary/relators/aut)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Springer, 2019.
Έκδοση:1st ed. 2019.
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03808nam a2200541 4500
001 978-3-030-14038-0
003 DE-He213
005 20191022151317.0
007 cr nn 008mamaa
008 190312s2019 gw | s |||| 0|eng d
020 |a 9783030140380  |9 978-3-030-14038-0 
024 7 |a 10.1007/978-3-030-14038-0  |2 doi 
040 |d GrThAP 
050 4 |a TK1-9971 
072 7 |a TJK  |2 bicssc 
072 7 |a TEC041000  |2 bisacsh 
072 7 |a TJK  |2 thema 
082 0 4 |a 621.382  |2 23 
100 1 |a McCarthy, Richard V.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Applying Predictive Analytics  |h [electronic resource] :  |b Finding Value in Data /  |c by Richard V. McCarthy, Mary M. McCarthy, Wendy Ceccucci, Leila Halawi. 
250 |a 1st ed. 2019. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2019. 
300 |a X, 205 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a Introduction to Predictive Analytics -- Know Your Data - Data Preparation -- What do Descriptive Statistics Tell Us -- The First of the Big Three - Regression -- The Second of the Big Three - Decision Trees -- The Third of the Big Three - Neural Networks -- Model Comparisons and Scoring -- Appendix A -- Data Dictionary for the Automobile Insurance Claim Fraud Data Example -- Conclusion. 
520 |a This textbook presents a practical approach to predictive analytics for classroom learning. It focuses on using analytics to solve business problems and compares several different modeling techniques, all explained from examples using the SAS Enterprise Miner software. The authors demystify complex algorithms to show how they can be utilized and explained within the context of enhancing business opportunities. Each chapter includes an opening vignette that provides real-life example of how business analytics have been used in various aspects of organizations to solve issue or improve their results. A running case provides an example of a how to build and analyze a complex analytics model and utilize it to predict future outcomes. Focuses on how to use predictive analytic techniques to analyze historical data for the purpose of predicting future results; Takes an applied approach and focus on solving business problems using predictive analytics and features case studies and a variety of examples; Uses examples in SAS Enterprise Miner, one of world's leading analytics software tools. 
650 0 |a Electrical engineering. 
650 0 |a Computational intelligence. 
650 0 |a Data mining. 
650 0 |a Big data. 
650 1 4 |a Communications Engineering, Networks.  |0 http://scigraph.springernature.com/things/product-market-codes/T24035 
650 2 4 |a Computational Intelligence.  |0 http://scigraph.springernature.com/things/product-market-codes/T11014 
650 2 4 |a Data Mining and Knowledge Discovery.  |0 http://scigraph.springernature.com/things/product-market-codes/I18030 
650 2 4 |a Big Data/Analytics.  |0 http://scigraph.springernature.com/things/product-market-codes/522070 
700 1 |a McCarthy, Mary M.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
700 1 |a Ceccucci, Wendy.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
700 1 |a Halawi, Leila.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783030140373 
776 0 8 |i Printed edition:  |z 9783030140397 
776 0 8 |i Printed edition:  |z 9783030140403 
856 4 0 |u https://doi.org/10.1007/978-3-030-14038-0  |z Full Text via HEAL-Link 
912 |a ZDB-2-ENG 
950 |a Engineering (Springer-11647)