R For Marketing Research and Analytics

The 2nd edition of R for Marketing Research and Analytics continues to be the best place to learn R for marketing research. This book is a complete introduction to the power of R for marketing research practitioners. The text describes statistical models from a conceptual point of view with a minima...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Chapman, Chris (Συγγραφέας, http://id.loc.gov/vocabulary/relators/aut), Feit, Elea McDonnell (http://id.loc.gov/vocabulary/relators/aut)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Springer, 2019.
Έκδοση:2nd ed. 2019.
Σειρά:Use R!,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 04572nam a2200493 4500
001 978-3-030-14316-9
003 DE-He213
005 20191025192340.0
007 cr nn 008mamaa
008 190328s2019 gw | s |||| 0|eng d
020 |a 9783030143169  |9 978-3-030-14316-9 
024 7 |a 10.1007/978-3-030-14316-9  |2 doi 
040 |d GrThAP 
050 4 |a QA276-280 
072 7 |a UFM  |2 bicssc 
072 7 |a COM077000  |2 bisacsh 
072 7 |a UFM  |2 thema 
082 0 4 |a 519.5  |2 23 
100 1 |a Chapman, Chris.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a R For Marketing Research and Analytics  |h [electronic resource] /  |c by Chris Chapman, Elea McDonnell Feit. 
250 |a 2nd ed. 2019. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2019. 
300 |a XX, 487 p. 151 illus., 69 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Use R!,  |x 2197-5736 
505 0 |a Chapter 1: Welcom to R -- Chapter 2: An Overview of the R Language -- Chapter 3: Describing Data -- Chapter 4: Relationships Between Continuous Variables -- Chapter 5: Comparing Groups: Tables and Visualizations -- Chapter 6: Comparing Groups: Statistical Tests -- Chapter 7: Identifying Drivers of Outcomes: Linear Models -- Chapter 8: Reducing Data Complexity -- Chapter 9: Assorted Linear Modeling Topics -- Chapter 10: Confirmatory Factor Analysis and Structural Equation Modeling -- Chapter 11: Segmentation: Clustering and Classification -- Chapter 12: Association Rules for Market Basket Analysis -- Chapter 13: Choice Modeling -- Chapter 14: Marketing Mix Models -- Appendix A: R Versions and Related Software -- Appendix B: Scaling Up -- Appendix C: Packages Used -- Appendix D: Online Materials and Data Files. 
520 |a The 2nd edition of R for Marketing Research and Analytics continues to be the best place to learn R for marketing research. This book is a complete introduction to the power of R for marketing research practitioners. The text describes statistical models from a conceptual point of view with a minimal amount of mathematics, presuming only an introductory knowledge of statistics. Hands-on chapters accelerate the learning curve by asking readers to interact with R from the beginning. Core topics include the R language, basic statistics, linear modeling, and data visualization, which is presented throughout as an integral part of analysis. Later chapters cover more advanced topics yet are intended to be approachable for all analysts. These sections examine logistic regression, customer segmentation, hierarchical linear modeling, market basket analysis, structural equation modeling, and conjoint analysis in R. The text uniquely presents Bayesian models with a minimally complex approach, demonstrating and explaining Bayesian methods alongside traditional analyses for analysis of variance, linear models, and metric and choice-based conjoint analysis. With its emphasis on data visualization, model assessment, and development of statistical intuition, this book provides guidance for any analyst looking to develop or improve skills in R for marketing applications. The 2nd edition increases the book's utility for students and instructors with the inclusion of exercises and classroom slides. At the same time, it retains all of the features that make it a vital resource for practitioners: non-mathematical exposition, examples modeled on real world marketing problems, intuitive guidance on research methods, and immediately applicable code. . 
650 0 |a Statistics . 
650 0 |a Marketing. 
650 1 4 |a Statistics and Computing/Statistics Programs.  |0 http://scigraph.springernature.com/things/product-market-codes/S12008 
650 2 4 |a Statistics for Business, Management, Economics, Finance, Insurance.  |0 http://scigraph.springernature.com/things/product-market-codes/S17010 
650 2 4 |a Marketing.  |0 http://scigraph.springernature.com/things/product-market-codes/513000 
700 1 |a Feit, Elea McDonnell.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783030143152 
776 0 8 |i Printed edition:  |z 9783030143176 
830 0 |a Use R!,  |x 2197-5736 
856 4 0 |u https://doi.org/10.1007/978-3-030-14316-9  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)