On Stein's Method for Infinitely Divisible Laws with Finite First Moment

This book focuses on quantitative approximation results for weak limit theorems when the target limiting law is infinitely divisible with finite first moment. Two methods are presented and developed to obtain such quantitative results. At the root of these methods stands a Stein characterizing ident...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Arras, Benjamin (Συγγραφέας, http://id.loc.gov/vocabulary/relators/aut), Houdré, Christian (http://id.loc.gov/vocabulary/relators/aut)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Springer, 2019.
Έκδοση:1st ed. 2019.
Σειρά:SpringerBriefs in Probability and Mathematical Statistics,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03308nam a2200481 4500
001 978-3-030-15017-4
003 DE-He213
005 20191027161039.0
007 cr nn 008mamaa
008 190424s2019 gw | s |||| 0|eng d
020 |a 9783030150174  |9 978-3-030-15017-4 
024 7 |a 10.1007/978-3-030-15017-4  |2 doi 
040 |d GrThAP 
050 4 |a QA273.A1-274.9 
050 4 |a QA274-274.9 
072 7 |a PBT  |2 bicssc 
072 7 |a MAT029000  |2 bisacsh 
072 7 |a PBT  |2 thema 
072 7 |a PBWL  |2 thema 
082 0 4 |a 519.2  |2 23 
100 1 |a Arras, Benjamin.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a On Stein's Method for Infinitely Divisible Laws with Finite First Moment  |h [electronic resource] /  |c by Benjamin Arras, Christian Houdré. 
250 |a 1st ed. 2019. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2019. 
300 |a XI, 104 p. 1 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a SpringerBriefs in Probability and Mathematical Statistics,  |x 2365-4333 
505 0 |a 1 Introduction -- 2 Preliminaries -- 3 Characterization and Coupling -- 4 General Upper Bounds by Fourier Methods -- 5 Solution to Stein's Equation for Self-Decomposable Laws -- 6 Applications to Sums of Independent Random Variables. 
520 |a This book focuses on quantitative approximation results for weak limit theorems when the target limiting law is infinitely divisible with finite first moment. Two methods are presented and developed to obtain such quantitative results. At the root of these methods stands a Stein characterizing identity discussed in the third chapter and obtained thanks to a covariance representation of infinitely divisible distributions. The first method is based on characteristic functions and Stein type identities when the involved sequence of random variables is itself infinitely divisible with finite first moment. In particular, based on this technique, quantitative versions of compound Poisson approximation of infinitely divisible distributions are presented. The second method is a general Stein's method approach for univariate selfdecomposable laws with finite first moment. Chapter 6 is concerned with applications and provides general upper bounds to quantify the rate of convergence in classical weak limit theorems for sums of independent random variables. This book is aimed at graduate students and researchers working in probability theory and mathematical statistics. 
650 0 |a Probabilities. 
650 1 4 |a Probability Theory and Stochastic Processes.  |0 http://scigraph.springernature.com/things/product-market-codes/M27004 
700 1 |a Houdré, Christian.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783030150167 
776 0 8 |i Printed edition:  |z 9783030150181 
830 0 |a SpringerBriefs in Probability and Mathematical Statistics,  |x 2365-4333 
856 4 0 |u https://doi.org/10.1007/978-3-030-15017-4  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)