Quantitative Stochastic Homogenization and Large-Scale Regularity

The focus of this book is the large-scale statistical behavior of solutions of divergence-form elliptic equations with random coefficients, which is closely related to the long-time asymptotics of reversible diffusions in random media and other basic models of statistical physics. Of particular inte...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Armstrong, Scott (Συγγραφέας, http://id.loc.gov/vocabulary/relators/aut), Kuusi, Tuomo (http://id.loc.gov/vocabulary/relators/aut), Mourrat, Jean-Christophe (http://id.loc.gov/vocabulary/relators/aut)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Springer, 2019.
Έκδοση:1st ed. 2019.
Σειρά:Grundlehren der mathematischen Wissenschaften, A Series of Comprehensive Studies in Mathematics, 352
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 04602nam a2200553 4500
001 978-3-030-15545-2
003 DE-He213
005 20191026192838.0
007 cr nn 008mamaa
008 190509s2019 gw | s |||| 0|eng d
020 |a 9783030155452  |9 978-3-030-15545-2 
024 7 |a 10.1007/978-3-030-15545-2  |2 doi 
040 |d GrThAP 
050 4 |a QA370-380 
072 7 |a PBKJ  |2 bicssc 
072 7 |a MAT007000  |2 bisacsh 
072 7 |a PBKJ  |2 thema 
082 0 4 |a 515.353  |2 23 
100 1 |a Armstrong, Scott.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Quantitative Stochastic Homogenization and Large-Scale Regularity  |h [electronic resource] /  |c by Scott Armstrong, Tuomo Kuusi, Jean-Christophe Mourrat. 
250 |a 1st ed. 2019. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2019. 
300 |a XXXVIII, 518 p. 430 illus., 4 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Grundlehren der mathematischen Wissenschaften, A Series of Comprehensive Studies in Mathematics,  |x 0072-7830 ;  |v 352 
505 0 |a Preface -- Assumptions and examples -- Frequently asked questions -- Notation -- Introduction and qualitative theory -- Convergence of the subadditive quantities -- Regularity on large scales -- Quantitative description of first-order correctors -- Scaling limits of first-order correctors -- Quantitative two-scale expansions -- Calderon-Zygmund gradient L^p estimates -- Estimates for parabolic problems -- Decay of the parabolic semigroup -- Linear equations with nonsymmetric coefficients -- Nonlinear equations -- Appendices: A.The O_s notation -- B.Function spaces and elliptic equations on Lipschitz domains -- C.The Meyers L^{2+\delta} estimate -- D. Sobolev norms and heat flow -- Parabolic Green functions -- Bibliography -- Index. 
520 |a The focus of this book is the large-scale statistical behavior of solutions of divergence-form elliptic equations with random coefficients, which is closely related to the long-time asymptotics of reversible diffusions in random media and other basic models of statistical physics. Of particular interest is the quantification of the rate at which solutions converge to those of the limiting, homogenized equation in the regime of large scale separation, and the description of their fluctuations around this limit. This self-contained presentation gives a complete account of the essential ideas and fundamental results of this new theory of quantitative stochastic homogenization, including the latest research on the topic, and is supplemented with many new results. The book serves as an introduction to the subject for advanced graduate students and researchers working in partial differential equations, statistical physics, probability and related fields, as well as a comprehensive reference for experts in homogenization. Being the first text concerned primarily with stochastic (as opposed to periodic) homogenization and which focuses on quantitative results, its perspective and approach are entirely different from other books in the literature. . 
650 0 |a Partial differential equations. 
650 0 |a Probabilities. 
650 0 |a Mathematical physics. 
650 0 |a Calculus of variations. 
650 1 4 |a Partial Differential Equations.  |0 http://scigraph.springernature.com/things/product-market-codes/M12155 
650 2 4 |a Probability Theory and Stochastic Processes.  |0 http://scigraph.springernature.com/things/product-market-codes/M27004 
650 2 4 |a Mathematical Physics.  |0 http://scigraph.springernature.com/things/product-market-codes/M35000 
650 2 4 |a Calculus of Variations and Optimal Control; Optimization.  |0 http://scigraph.springernature.com/things/product-market-codes/M26016 
700 1 |a Kuusi, Tuomo.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
700 1 |a Mourrat, Jean-Christophe.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783030155445 
776 0 8 |i Printed edition:  |z 9783030155469 
776 0 8 |i Printed edition:  |z 9783030155476 
830 0 |a Grundlehren der mathematischen Wissenschaften, A Series of Comprehensive Studies in Mathematics,  |x 0072-7830 ;  |v 352 
856 4 0 |u https://doi.org/10.1007/978-3-030-15545-2  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)