Quantitative Stochastic Homogenization and Large-Scale Regularity
The focus of this book is the large-scale statistical behavior of solutions of divergence-form elliptic equations with random coefficients, which is closely related to the long-time asymptotics of reversible diffusions in random media and other basic models of statistical physics. Of particular inte...
Κύριοι συγγραφείς: | , , |
---|---|
Συγγραφή απο Οργανισμό/Αρχή: | |
Μορφή: | Ηλεκτρονική πηγή Ηλ. βιβλίο |
Γλώσσα: | English |
Έκδοση: |
Cham :
Springer International Publishing : Imprint: Springer,
2019.
|
Έκδοση: | 1st ed. 2019. |
Σειρά: | Grundlehren der mathematischen Wissenschaften, A Series of Comprehensive Studies in Mathematics,
352 |
Θέματα: | |
Διαθέσιμο Online: | Full Text via HEAL-Link |
Πίνακας περιεχομένων:
- Preface
- Assumptions and examples
- Frequently asked questions
- Notation
- Introduction and qualitative theory
- Convergence of the subadditive quantities
- Regularity on large scales
- Quantitative description of first-order correctors
- Scaling limits of first-order correctors
- Quantitative two-scale expansions
- Calderon-Zygmund gradient L^p estimates
- Estimates for parabolic problems
- Decay of the parabolic semigroup
- Linear equations with nonsymmetric coefficients
- Nonlinear equations
- Appendices: A.The O_s notation
- B.Function spaces and elliptic equations on Lipschitz domains
- C.The Meyers L^{2+\delta} estimate
- D. Sobolev norms and heat flow
- Parabolic Green functions
- Bibliography
- Index.