Quantitative Stochastic Homogenization and Large-Scale Regularity

The focus of this book is the large-scale statistical behavior of solutions of divergence-form elliptic equations with random coefficients, which is closely related to the long-time asymptotics of reversible diffusions in random media and other basic models of statistical physics. Of particular inte...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Armstrong, Scott (Συγγραφέας, http://id.loc.gov/vocabulary/relators/aut), Kuusi, Tuomo (http://id.loc.gov/vocabulary/relators/aut), Mourrat, Jean-Christophe (http://id.loc.gov/vocabulary/relators/aut)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Springer, 2019.
Έκδοση:1st ed. 2019.
Σειρά:Grundlehren der mathematischen Wissenschaften, A Series of Comprehensive Studies in Mathematics, 352
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
Πίνακας περιεχομένων:
  • Preface
  • Assumptions and examples
  • Frequently asked questions
  • Notation
  • Introduction and qualitative theory
  • Convergence of the subadditive quantities
  • Regularity on large scales
  • Quantitative description of first-order correctors
  • Scaling limits of first-order correctors
  • Quantitative two-scale expansions
  • Calderon-Zygmund gradient L^p estimates
  • Estimates for parabolic problems
  • Decay of the parabolic semigroup
  • Linear equations with nonsymmetric coefficients
  • Nonlinear equations
  • Appendices: A.The O_s notation
  • B.Function spaces and elliptic equations on Lipschitz domains
  • C.The Meyers L^{2+\delta} estimate
  • D. Sobolev norms and heat flow
  • Parabolic Green functions
  • Bibliography
  • Index.