Siegel Modular Forms A Classical and Representation-Theoretic Approach /

This monograph introduces two approaches to studying Siegel modular forms: the classical approach as holomorphic functions on the Siegel upper half space, and the approach via representation theory on the symplectic group. By illustrating the interconnections shared by the two, this book fills an im...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Pitale, Ameya (Συγγραφέας, http://id.loc.gov/vocabulary/relators/aut)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Springer, 2019.
Έκδοση:1st ed. 2019.
Σειρά:Lecture Notes in Mathematics, 2240
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03519nam a2200481 4500
001 978-3-030-15675-6
003 DE-He213
005 20190618201831.0
007 cr nn 008mamaa
008 190507s2019 gw | s |||| 0|eng d
020 |a 9783030156756  |9 978-3-030-15675-6 
024 7 |a 10.1007/978-3-030-15675-6  |2 doi 
040 |d GrThAP 
050 4 |a QA241-247.5 
072 7 |a PBH  |2 bicssc 
072 7 |a MAT022000  |2 bisacsh 
072 7 |a PBH  |2 thema 
082 0 4 |a 512.7  |2 23 
100 1 |a Pitale, Ameya.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Siegel Modular Forms  |h [electronic resource] :  |b A Classical and Representation-Theoretic Approach /  |c by Ameya Pitale. 
250 |a 1st ed. 2019. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2019. 
300 |a IX, 138 p. 112 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Lecture Notes in Mathematics,  |x 0075-8434 ;  |v 2240 
505 0 |a Introduction -- Lecture 1:Introduction to Siegel modular forms -- Lecture 2: Examples -- Lecture 3: Hecke Theory and L-functions -- Lecture 4: Non-vanishing of primitive Fourier coefficients and applications -- Lecture 5: Applications of properties of L-functions -- Lecture 6: Cuspidal automorphic representations corresponding to Siegel modular forms -- Lecture 7: Local representation theory of GSp4(ℚp) -- Lecture 8: Bessel models and applications -- Lecture 9: Analytic and arithmetic properties of GSp4 x GL2 L-functions -- Lecture 10: Integral representation of the standard L-function. 
520 |a This monograph introduces two approaches to studying Siegel modular forms: the classical approach as holomorphic functions on the Siegel upper half space, and the approach via representation theory on the symplectic group. By illustrating the interconnections shared by the two, this book fills an important gap in the existing literature on modular forms. It begins by establishing the basics of the classical theory of Siegel modular forms, and then details more advanced topics. After this, much of the basic local representation theory is presented. Exercises are featured heavily throughout the volume, the solutions of which are helpfully provided in an appendix. Other topics considered include Hecke theory, Fourier coefficients, cuspidal automorphic representations, Bessel models, and integral representation. Graduate students and young researchers will find this volume particularly useful. It will also appeal to researchers in the area as a reference volume. Some knowledge of GL(2) theory is recommended, but there are a number of appendices included if the reader is not already familiar. 
650 0 |a Number theory. 
650 0 |a Group theory. 
650 1 4 |a Number Theory.  |0 http://scigraph.springernature.com/things/product-market-codes/M25001 
650 2 4 |a Group Theory and Generalizations.  |0 http://scigraph.springernature.com/things/product-market-codes/M11078 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783030156749 
776 0 8 |i Printed edition:  |z 9783030156763 
830 0 |a Lecture Notes in Mathematics,  |x 0075-8434 ;  |v 2240 
856 4 0 |u https://doi.org/10.1007/978-3-030-15675-6  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
912 |a ZDB-2-LNM 
950 |a Mathematics and Statistics (Springer-11649)