Clinical Prediction Models A Practical Approach to Development, Validation, and Updating /

The second edition of this volume provides insight and practical illustrations on how modern statistical concepts and regression methods can be applied in medical prediction problems, including diagnostic and prognostic outcomes. Many advances have been made in statistical approaches towards outcome...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Steyerberg, Ewout W. (Συγγραφέας, http://id.loc.gov/vocabulary/relators/aut)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Springer, 2019.
Έκδοση:2nd ed. 2019.
Σειρά:Statistics for Biology and Health,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 05138nam a2200493 4500
001 978-3-030-16399-0
003 DE-He213
005 20191027173053.0
007 cr nn 008mamaa
008 190722s2019 gw | s |||| 0|eng d
020 |a 9783030163990  |9 978-3-030-16399-0 
024 7 |a 10.1007/978-3-030-16399-0  |2 doi 
040 |d GrThAP 
050 4 |a QA276-280 
072 7 |a PBT  |2 bicssc 
072 7 |a MED090000  |2 bisacsh 
072 7 |a PBT  |2 thema 
072 7 |a MBNS  |2 thema 
082 0 4 |a 519.5  |2 23 
100 1 |a Steyerberg, Ewout W.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Clinical Prediction Models  |h [electronic resource] :  |b A Practical Approach to Development, Validation, and Updating /  |c by Ewout W. Steyerberg. 
250 |a 2nd ed. 2019. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2019. 
300 |a XXXIII, 558 p. 226 illus., 161 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Statistics for Biology and Health,  |x 1431-8776 
505 0 |a Introduction -- Applications of prediction models.Study design for prediction modeling -- Statistical Models for Prediction -- Overfitting and optimism in prediction models -- Choosing between alternative statistical models -- Missing values -- Case study on dealing with missing values -- Coding of Categorical and Continuous Predictors -- Restrictions on candidate predictors -- Selection of main effects -- Assumptions in regression models: Additivity and linearity -- Modern estimation methods -- Estimation with external information -- Evaluation of performance -- Evaluation of Clinical Usefulness -- Validation of Prediction Models -- Presentation formats -- Patterns of external validity -- Updating for a new setting -- Updating for multiple settings -- Case study on a prediction of 30-day mortality -- Case study on Survival Analysis: prediction of cardiovascular events -- Overall lessons and data sets -- References. 
520 |a The second edition of this volume provides insight and practical illustrations on how modern statistical concepts and regression methods can be applied in medical prediction problems, including diagnostic and prognostic outcomes. Many advances have been made in statistical approaches towards outcome prediction, but a sensible strategy is needed for model development, validation, and updating, such that prediction models can better support medical practice. There is an increasing need for personalized evidence-based medicine that uses an individualized approach to medical decision-making. In this Big Data era, there is expanded access to large volumes of routinely collected data and an increased number of applications for prediction models, such as targeted early detection of disease and individualized approaches to diagnostic testing and treatment. Clinical Prediction Models presents a practical checklist that needs to be considered for development of a valid prediction model. Steps include preliminary considerations such as dealing with missing values; coding of predictors; selection of main effects and interactions for a multivariable model; estimation of model parameters with shrinkage methods and incorporation of external data; evaluation of performance and usefulness; internal validation; and presentation formatting. The text also addresses common issues that make prediction models suboptimal, such as small sample sizes, exaggerated claims, and poor generalizability. The text is primarily intended for clinical epidemiologists and biostatisticians. Including many case studies and publicly available R code and data sets, the book is also appropriate as a textbook for a graduate course on predictive modeling in diagnosis and prognosis. While practical in nature, the book also provides a philosophical perspective on data analysis in medicine that goes beyond predictive modeling. Updates to this new and expanded edition include: • A discussion of Big Data and its implications for the design of prediction models • Machine learning issues • More simulations with missing 'y' values • Extended discussion on between-cohort heterogeneity • Description of ShinyApp • Updated LASSO illustration • New case studies . 
650 0 |a Statistics . 
650 0 |a Internal medicine. 
650 1 4 |a Statistics for Life Sciences, Medicine, Health Sciences.  |0 http://scigraph.springernature.com/things/product-market-codes/S17030 
650 2 4 |a Internal Medicine.  |0 http://scigraph.springernature.com/things/product-market-codes/H33002 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783030163983 
776 0 8 |i Printed edition:  |z 9783030164003 
776 0 8 |i Printed edition:  |z 9783030164010 
830 0 |a Statistics for Biology and Health,  |x 1431-8776 
856 4 0 |u https://doi.org/10.1007/978-3-030-16399-0  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)