MPC-Based Reference Governors Theory and Case Studies /

This monograph focuses on the design of optimal reference governors using model predictive control (MPC) strategies. These MPC-based governors serve as a supervisory control layer that generates optimal trajectories for lower-level controllers such that the safety of the system is enforced while opt...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Klaučo, Martin (Συγγραφέας, http://id.loc.gov/vocabulary/relators/aut), Kvasnica, Michal (http://id.loc.gov/vocabulary/relators/aut)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Springer, 2019.
Έκδοση:1st ed. 2019.
Σειρά:Advances in Industrial Control,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 04690nam a2200541 4500
001 978-3-030-17405-7
003 DE-He213
005 20191027033055.0
007 cr nn 008mamaa
008 190521s2019 gw | s |||| 0|eng d
020 |a 9783030174057  |9 978-3-030-17405-7 
024 7 |a 10.1007/978-3-030-17405-7  |2 doi 
040 |d GrThAP 
050 4 |a TJ212-225 
072 7 |a TJFM  |2 bicssc 
072 7 |a TEC004000  |2 bisacsh 
072 7 |a TJFM  |2 thema 
082 0 4 |a 629.8  |2 23 
100 1 |a Klaučo, Martin.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a MPC-Based Reference Governors  |h [electronic resource] :  |b Theory and Case Studies /  |c by Martin Klaučo, Michal Kvasnica. 
250 |a 1st ed. 2019. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2019. 
300 |a XXIII, 137 p. 46 illus., 24 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Advances in Industrial Control,  |x 1430-9491 
505 0 |a Reference Governors -- Part I: Theory -- Mathematical Preliminaries and General Optimization -- Model Predictive Control -- Inner Loops with PID Controllers -- Inner Loops with Relay-Based Controllers -- Inner Loops with LQ Controllers -- Inner Loops with Model Predictive Controllers -- Part II: Case Studies -- Boiler-Turbine System -- Magnetic-Levitation Process -- Thermostatically Controlled Indoor Temperature -- Cascade Model Predictive Control of Chemical Reactors -- Conclusions and Future Work. 
520 |a This monograph focuses on the design of optimal reference governors using model predictive control (MPC) strategies. These MPC-based governors serve as a supervisory control layer that generates optimal trajectories for lower-level controllers such that the safety of the system is enforced while optimizing the overall performance of the closed-loop system. The first part of the monograph introduces the concept of optimization-based reference governors, provides an overview of the fundamentals of convex optimization and MPC, and discusses a rigorous design procedure for MPC-based reference governors. The design procedure depends on the type of lower-level controller involved and four practical cases are covered: PID lower-level controllers; linear quadratic regulators; relay-based controllers; and cases where the lower-level controllers are themselves model predictive controllers. For each case the authors provide a thorough theoretical derivation of the corresponding reference governor, followed by illustrative examples. The second part of the book is devoted to practical aspects of MPC-based reference governor schemes. Experimental and simulation case studies from four applications are discussed in depth: control of a power generation unit; temperature control in buildings; stabilization of objects in a magnetic field; and vehicle convoy control. Each chapter includes precise mathematical formulations of the corresponding MPC-based governor, reformulation of the control problem into an optimization problem, and a detailed presentation and comparison of results. The case studies and practical considerations of constraints will help control engineers working in various industries in the use of MPC at the supervisory level. The detailed mathematical treatments will attract the attention of academic researchers interested in the applications of MPC. 
650 0 |a Control engineering. 
650 0 |a Chemical engineering. 
650 0 |a Manufactures. 
650 0 |a Automotive engineering. 
650 1 4 |a Control and Systems Theory.  |0 http://scigraph.springernature.com/things/product-market-codes/T19010 
650 2 4 |a Industrial Chemistry/Chemical Engineering.  |0 http://scigraph.springernature.com/things/product-market-codes/C27000 
650 2 4 |a Manufacturing, Machines, Tools, Processes.  |0 http://scigraph.springernature.com/things/product-market-codes/T22050 
650 2 4 |a Automotive Engineering.  |0 http://scigraph.springernature.com/things/product-market-codes/T17047 
700 1 |a Kvasnica, Michal.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783030174040 
776 0 8 |i Printed edition:  |z 9783030174064 
776 0 8 |i Printed edition:  |z 9783030174071 
830 0 |a Advances in Industrial Control,  |x 1430-9491 
856 4 0 |u https://doi.org/10.1007/978-3-030-17405-7  |z Full Text via HEAL-Link 
912 |a ZDB-2-INR 
950 |a Intelligent Technologies and Robotics (Springer-42732)