Matrices, Statistics and Big Data Selected Contributions from IWMS 2016 /

This volume features selected, refereed papers on various aspects of statistics, matrix theory and its applications to statistics, as well as related numerical linear algebra topics and numerical solution methods, which are relevant for problems arising in statistics and in big data. The contributio...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Άλλοι συγγραφείς: Ahmed, S. Ejaz (Επιμελητής έκδοσης, http://id.loc.gov/vocabulary/relators/edt), Carvalho, Francisco (Επιμελητής έκδοσης, http://id.loc.gov/vocabulary/relators/edt), Puntanen, Simo (Επιμελητής έκδοσης, http://id.loc.gov/vocabulary/relators/edt)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Springer, 2019.
Έκδοση:1st ed. 2019.
Σειρά:Contributions to Statistics,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 05094nam a2200601 4500
001 978-3-030-17519-1
003 DE-He213
005 20191220125838.0
007 cr nn 008mamaa
008 190801s2019 gw | s |||| 0|eng d
020 |a 9783030175191  |9 978-3-030-17519-1 
024 7 |a 10.1007/978-3-030-17519-1  |2 doi 
040 |d GrThAP 
050 4 |a QA276-280 
072 7 |a PBT  |2 bicssc 
072 7 |a MAT029000  |2 bisacsh 
072 7 |a PBT  |2 thema 
082 0 4 |a 519.5  |2 23 
245 1 0 |a Matrices, Statistics and Big Data  |h [electronic resource] :  |b Selected Contributions from IWMS 2016 /  |c edited by S. Ejaz Ahmed, Francisco Carvalho, Simo Puntanen. 
250 |a 1st ed. 2019. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2019. 
300 |a XII, 190 p. 24 illus., 14 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Contributions to Statistics,  |x 1431-1968 
505 0 |a Preface (S. Ejaz Ahmed, Francisco Carvalho, Simo Puntanen) -- Further properties of the linear sufficiency in the partitioned linear model (Augustyn Markiewicz, Simo Puntanen) -- Hybrid model for recurrent event data (Ivo Sousa-Ferreira, Ana Maria Abreu) -- A new look at combining information from stratum submodels (Radosław Kala) -- Ingram Olkin (1924-2016): An appreciation for a people person (Simo Puntanen, George P. H. Styan) -- A notion of positive definiteness for arithmetical functions (Mika Mattila, Pentti Haukkanen) -- Some issues in generalized linear modeling (Alan Agresti) -- Orthogonal block structure and uniformly best linear unbiased estimators (Sandra S. Ferreira, Dário Ferreira, Célia Nunes, Francisco Carvalho, João Tiago Mexia) -- Hadamard matrices on error detection and correction: Useful links to BIBD (Carla Francisco, Teresa A. Oliveira, Amílcar Oliveira, Francisco Carvalho) -- Covariance matrix regularization for banded Toeplitz-structure via Frobenius-norm discrepancy (Xiangzhao Cui, Zhenyang Li, Jine Zhao, Defei Zhang, Jianxin Pan) -- Penalized relative error estimation of a partially functional linear multiplicative model (Tao Zhang, Yuan Huang, Qingzhao Zhang, Shuangge Ma, S. Ejaz Ahmed) -- High-dimensional regression under correlated design: An extensive simulation study (S. Ejaz Ahmed, Hwanwoo Kim, Gökhan Yıldırım and Bahadır Yüzbaşı) -- An efficient estimation strategy in autoregressive conditional Poisson model with applications to hospital emergency department data (S. Ejaz Ahmed, Khalifa Es-Sebaiy, Abdulkadir Hussein, Idir Ouassou, Anne Snowdon). . 
520 |a This volume features selected, refereed papers on various aspects of statistics, matrix theory and its applications to statistics, as well as related numerical linear algebra topics and numerical solution methods, which are relevant for problems arising in statistics and in big data. The contributions were originally presented at the 25th International Workshop on Matrices and Statistics (IWMS 2016), held in Funchal (Madeira), Portugal on June 6-9, 2016. The IWMS workshop series brings together statisticians, computer scientists, data scientists and mathematicians, helping them better understand each other's tools, and fostering new collaborations at the interface of matrix theory and statistics. 
650 0 |a Statistics . 
650 0 |a Matrix theory. 
650 0 |a Algebra. 
650 0 |a Data mining. 
650 0 |a Probabilities. 
650 0 |a Mathematical statistics. 
650 1 4 |a Statistical Theory and Methods.  |0 http://scigraph.springernature.com/things/product-market-codes/S11001 
650 2 4 |a Linear and Multilinear Algebras, Matrix Theory.  |0 http://scigraph.springernature.com/things/product-market-codes/M11094 
650 2 4 |a Data Mining and Knowledge Discovery.  |0 http://scigraph.springernature.com/things/product-market-codes/I18030 
650 2 4 |a Statistics for Life Sciences, Medicine, Health Sciences.  |0 http://scigraph.springernature.com/things/product-market-codes/S17030 
650 2 4 |a Probability Theory and Stochastic Processes.  |0 http://scigraph.springernature.com/things/product-market-codes/M27004 
650 2 4 |a Probability and Statistics in Computer Science.  |0 http://scigraph.springernature.com/things/product-market-codes/I17036 
700 1 |a Ahmed, S. Ejaz.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a Carvalho, Francisco.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a Puntanen, Simo.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783030175184 
776 0 8 |i Printed edition:  |z 9783030175207 
776 0 8 |i Printed edition:  |z 9783030175214 
830 0 |a Contributions to Statistics,  |x 1431-1968 
856 4 0 |u https://doi.org/10.1007/978-3-030-17519-1  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)