Quantitative Geosciences: Data Analytics, Geostatistics, Reservoir Characterization and Modeling

Earth science is becoming increasingly quantitative in the digital age. Quantification of geoscience and engineering problems underpins many of the applications of big data and artificial intelligence. This book presents quantitative geosciences in three parts. Part 1 presents data analytics using p...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Ma, Y. Z. (Συγγραφέας, http://id.loc.gov/vocabulary/relators/aut)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Springer, 2019.
Έκδοση:1st ed. 2019.
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 05269nam a2200577 4500
001 978-3-030-17860-4
003 DE-He213
005 20191022172329.0
007 cr nn 008mamaa
008 190715s2019 gw | s |||| 0|eng d
020 |a 9783030178604  |9 978-3-030-17860-4 
024 7 |a 10.1007/978-3-030-17860-4  |2 doi 
040 |d GrThAP 
050 4 |a TJ163.13-163.25 
050 4 |a TP315-360 
072 7 |a THF  |2 bicssc 
072 7 |a TEC031030  |2 bisacsh 
072 7 |a THF  |2 thema 
082 0 4 |a 662.6  |2 23 
100 1 |a Ma, Y. Z.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Quantitative Geosciences: Data Analytics, Geostatistics, Reservoir Characterization and Modeling  |h [electronic resource] /  |c by Y. Z. Ma. 
250 |a 1st ed. 2019. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2019. 
300 |a XXV, 640 p. 294 illus., 167 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a Preface -- 1. Introduction and Overview -- Part 1: Reservoir Characterization -- 2. Essential Reservoir Geology and Multi-Scales of Petroleum Reservoir Heterogeneities -- 3. Introduction to Petrophysical Reservoir Characterization -- 4. Practical Seismic Reservoir Characterization -- 5. Statistical and Data Analytical Reservoir Characterization -- 6. Geostatistical Reservoir Characterization -- 7. Integrated Facies and Lithofacies Analysis, Identification and Classification -- Part 2: Geological and Reservoir Modeling -- 8. Constructing a Reservoir-Model Framework -- 9. Geostatistical Modeling Methods -- 10. Facies and Lithofacies Modeling -- 11. Porosity Modeling -- 12. Permeability Modeling -- 13. Fluid-Saturation Modeling -- 14. Uncertainty Analysis and Volumetrics Evaluation -- Part 3: Special and Advanced Topics -- 15. Naturally Fractured Reservoir Characterization and Modeling -- 16. Updating a Reservoir Model and Feedback Loop in Reservoir Modeling -- 17. Ranking Reservoir Models -- 18. Reservoir Model Upscaling, Simulation and Validation -- 19. Common and Uncommon Pitfalls in Integrated Reservoir Characterization and Modeling -- 20. Planning an Integrated Reservoir Characterization and Modeling Project -- 21. Towards a Fully Integrated Reservoir Characterization, Modeling and Uncertainty Analysis for Petroleum Resource Management and Field Development. . 
520 |a Earth science is becoming increasingly quantitative in the digital age. Quantification of geoscience and engineering problems underpins many of the applications of big data and artificial intelligence. This book presents quantitative geosciences in three parts. Part 1 presents data analytics using probability, statistical and machine-learning methods. Part 2 covers reservoir characterization using several geoscience disciplines: including geology, geophysics, petrophysics and geostatistics. Part 3 treats reservoir modeling, resource evaluation and uncertainty analysis using integrated geoscience, engineering and geostatistical methods. As the petroleum industry is heading towards operating oil fields digitally, a multidisciplinary skillset is a must for geoscientists who need to use data analytics to resolve inconsistencies in various sources of data, model reservoir properties, evaluate uncertainties, and quantify risk for decision making. This book intends to serve as a bridge for advancing the multidisciplinary integration for digital fields. The goal is to move beyond using quantitative methods individually to an integrated descriptive-quantitative analysis. In big data, everything tells us something, but nothing tells us everything. This book emphasizes the integrated, multidisciplinary solutions for practical problems in resource evaluation and field development. 
650 0 |a Fossil fuels. 
650 0 |a Geology-Statistical methods. 
650 0 |a Geotechnical engineering. 
650 0 |a Statistics . 
650 0 |a Operations research. 
650 0 |a Decision making. 
650 0 |a Geophysics. 
650 1 4 |a Fossil Fuels (incl. Carbon Capture).  |0 http://scigraph.springernature.com/things/product-market-codes/114000 
650 2 4 |a Quantitative Geology.  |0 http://scigraph.springernature.com/things/product-market-codes/G17030 
650 2 4 |a Geotechnical Engineering & Applied Earth Sciences.  |0 http://scigraph.springernature.com/things/product-market-codes/G37010 
650 2 4 |a Statistics for Engineering, Physics, Computer Science, Chemistry and Earth Sciences.  |0 http://scigraph.springernature.com/things/product-market-codes/S17020 
650 2 4 |a Operations Research/Decision Theory.  |0 http://scigraph.springernature.com/things/product-market-codes/521000 
650 2 4 |a Geophysics/Geodesy.  |0 http://scigraph.springernature.com/things/product-market-codes/G18009 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783030178598 
776 0 8 |i Printed edition:  |z 9783030178611 
776 0 8 |i Printed edition:  |z 9783030178628 
856 4 0 |u https://doi.org/10.1007/978-3-030-17860-4  |z Full Text via HEAL-Link 
912 |a ZDB-2-ENE 
950 |a Energy (Springer-40367)