Applied Machine Learning

Machine learning methods are now an important tool for scientists, researchers, engineers and students in a wide range of areas. This book is written for people who want to adopt and use the main tools of machine learning, but aren't necessarily going to want to be machine learning researchers....

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Forsyth, David (Συγγραφέας, http://id.loc.gov/vocabulary/relators/aut)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Springer, 2019.
Έκδοση:1st ed. 2019.
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03825nam a2200457 4500
001 978-3-030-18114-7
003 DE-He213
005 20191027152232.0
007 cr nn 008mamaa
008 190712s2019 gw | s |||| 0|eng d
020 |a 9783030181147  |9 978-3-030-18114-7 
024 7 |a 10.1007/978-3-030-18114-7  |2 doi 
040 |d GrThAP 
050 4 |a Q334-342 
072 7 |a UYQ  |2 bicssc 
072 7 |a COM004000  |2 bisacsh 
072 7 |a UYQ  |2 thema 
082 0 4 |a 006.3  |2 23 
100 1 |a Forsyth, David.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Applied Machine Learning   |h [electronic resource] /  |c by David Forsyth. 
250 |a 1st ed. 2019. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2019. 
300 |a XXI, 494 p. 159 illus., 86 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a 1. Learning to Classify -- 2. SVM's and Random Forests -- 3. A Little Learning Theory -- 4. High-dimensional Data -- 5. Principal Component Analysis -- 6. Low Rank Approximations -- 7. Canonical Correlation Analysis -- 8. Clustering -- 9. Clustering using Probability Models -- 10. Regression -- 11. Regression: Choosing and Managing Models -- 12. Boosting -- 13. Hidden Markov Models -- 14. Learning Sequence Models Discriminatively -- 15. Mean Field Inference -- 16. Simple Neural Networks -- 17. Simple Image Classifiers -- 18. Classifying Images and Detecting Objects -- 19. Small Codes for Big Signals -- Index. 
520 |a Machine learning methods are now an important tool for scientists, researchers, engineers and students in a wide range of areas. This book is written for people who want to adopt and use the main tools of machine learning, but aren't necessarily going to want to be machine learning researchers. Intended for students in final year undergraduate or first year graduate computer science programs in machine learning, this textbook is a machine learning toolkit. Applied Machine Learning covers many topics for people who want to use machine learning processes to get things done, with a strong emphasis on using existing tools and packages, rather than writing one's own code. A companion to the author's Probability and Statistics for Computer Science, this book picks up where the earlier book left off (but also supplies a summary of probability that the reader can use). Emphasizing the usefulness of standard machinery from applied statistics, this textbook gives an overview of the major applied areas in learning Covers the ideas in machine learning that everyone going to use learning tools should know, whatever their chosen specialty or career. Broad coverage of the area ensures enough to get the reader started, and to realize that it's worth knowing more in-depth knowledge of the topic. Practical approach emphasizes using existing tools and packages quickly, with enough pragmatic material on deep networks to get the learner started without needing to study other material. 
650 0 |a Artificial intelligence. 
650 0 |a Mathematical statistics. 
650 1 4 |a Artificial Intelligence.  |0 http://scigraph.springernature.com/things/product-market-codes/I21000 
650 2 4 |a Probability and Statistics in Computer Science.  |0 http://scigraph.springernature.com/things/product-market-codes/I17036 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783030181130 
776 0 8 |i Printed edition:  |z 9783030181154 
776 0 8 |i Printed edition:  |z 9783030181161 
856 4 0 |u https://doi.org/10.1007/978-3-030-18114-7  |z Full Text via HEAL-Link 
912 |a ZDB-2-SCS 
950 |a Computer Science (Springer-11645)