Endotrivial Modules

This is an in-depth report on the endotrivial modules, an important class of modular representations for finite groups. Following the historical development of the theory, the book starts with a review of the necessary definitions and some key examples. The main results obtained using traditional te...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Mazza, Nadia (Συγγραφέας, http://id.loc.gov/vocabulary/relators/aut)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Springer, 2019.
Έκδοση:1st ed. 2019.
Σειρά:SpringerBriefs in Mathematics,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 02840nam a2200505 4500
001 978-3-030-18156-7
003 DE-He213
005 20191028193146.0
007 cr nn 008mamaa
008 190525s2019 gw | s |||| 0|eng d
020 |a 9783030181567  |9 978-3-030-18156-7 
024 7 |a 10.1007/978-3-030-18156-7  |2 doi 
040 |d GrThAP 
050 4 |a QA174-183 
072 7 |a PBG  |2 bicssc 
072 7 |a MAT002010  |2 bisacsh 
072 7 |a PBG  |2 thema 
082 0 4 |a 512.2  |2 23 
100 1 |a Mazza, Nadia.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Endotrivial Modules  |h [electronic resource] /  |c by Nadia Mazza. 
250 |a 1st ed. 2019. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2019. 
300 |a X, 120 p. 8 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a SpringerBriefs in Mathematics,  |x 2191-8198 
505 0 |a 1 Introduction -- 2 Endotrivial modules -- 3 Classifying endotrivial modules -- 4 The torsionfree part of the group of endotrivial modules -- 5 Torsion endotrivial modules -- 6 Endotrivial modules for Very Important Groups. 
520 |a This is an in-depth report on the endotrivial modules, an important class of modular representations for finite groups. Following the historical development of the theory, the book starts with a review of the necessary definitions and some key examples. The main results obtained using traditional techniques are then presented, followed by more recent results such as the work of Grodal inspired by algebraic topology. In the last part of the book original methods are applied to obtain the group of endotrivial modules for certain very important groups. An accessible reference collecting half a century of research on endotrivial modules, this book will be of interest to researchers in algebra. 
650 0 |a Group theory. 
650 0 |a Category theory (Mathematics). 
650 0 |a Homological algebra. 
650 0 |a K-theory. 
650 1 4 |a Group Theory and Generalizations.  |0 http://scigraph.springernature.com/things/product-market-codes/M11078 
650 2 4 |a Category Theory, Homological Algebra.  |0 http://scigraph.springernature.com/things/product-market-codes/M11035 
650 2 4 |a K-Theory.  |0 http://scigraph.springernature.com/things/product-market-codes/M11086 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783030181550 
776 0 8 |i Printed edition:  |z 9783030181574 
830 0 |a SpringerBriefs in Mathematics,  |x 2191-8198 
856 4 0 |u https://doi.org/10.1007/978-3-030-18156-7  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)