Quantum versus Classical Mechanics and Integrability Problems towards a unification of approaches and tools /

This accessible monograph introduces physicists to the general relation between classical and quantum mechanics based on the mathematical idea of deformation quantization and describes an original approach to the theory of quantum integrable systems developed by the author. The first goal of the boo...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Błaszak, Maciej (Συγγραφέας, http://id.loc.gov/vocabulary/relators/aut)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Springer, 2019.
Έκδοση:1st ed. 2019.
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 04000nam a2200481 4500
001 978-3-030-18379-0
003 DE-He213
005 20191026082023.0
007 cr nn 008mamaa
008 190611s2019 gw | s |||| 0|eng d
020 |a 9783030183790  |9 978-3-030-18379-0 
024 7 |a 10.1007/978-3-030-18379-0  |2 doi 
040 |d GrThAP 
050 4 |a QC173.96-174.52 
072 7 |a PHQ  |2 bicssc 
072 7 |a SCI057000  |2 bisacsh 
072 7 |a PHQ  |2 thema 
082 0 4 |a 530.12  |2 23 
100 1 |a Błaszak, Maciej.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Quantum versus Classical Mechanics and Integrability Problems  |h [electronic resource] :  |b towards a unification of approaches and tools /  |c by Maciej Błaszak. 
250 |a 1st ed. 2019. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2019. 
300 |a XIII, 460 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a Introduction -- Basic Mathematical Tools -- Classical Hamiltonian Mechanics -- Classical Integrable and Separable Hamiltonian Systems -- Classical Separability Theory -- Deformation Theory of Classical Poisson Algebras -- Quantum Hamiltonian Mechanics on Symplectic Manifolds -- Position Representation of Quantum Mechanics over Riemannian Configuration Space -- References -- Index. 
520 |a This accessible monograph introduces physicists to the general relation between classical and quantum mechanics based on the mathematical idea of deformation quantization and describes an original approach to the theory of quantum integrable systems developed by the author. The first goal of the book is to develop of a common, coordinate free formulation of classical and quantum Hamiltonian mechanics, framed in common mathematical language. In particular, a coordinate free model of quantum Hamiltonian systems in Riemannian spaces is formulated, based on the mathematical idea of deformation quantization, as a complete physical theory with an appropriate mathematical accuracy. The second goal is to develop of a theory which allows for a deeper understanding of classical and quantum integrability. For this reason the modern separability theory on both classical and quantum level is presented. In particular, the book presents a modern geometric separability theory, based on bi-Poissonian and bi-presymplectic representations of finite dimensional Liouville integrable systems and their admissible separable quantizations. The book contains also a generalized theory of classical Stäckel transforms and the discussion of the concept of quantum trajectories. In order to make the text consistent and self-contained, the book starts with a compact overview of mathematical tools necessary for understanding the remaining part of the book. However, because the book is dedicated mainly to physicists, despite its mathematical nature, it refrains from highlighting definitions, theorems or lemmas. Nevertheless, all statements presented are either proved or the reader is referred to the literature where the proof is available. 
650 0 |a Quantum physics. 
650 0 |a Mathematical physics. 
650 0 |a Mechanics. 
650 1 4 |a Quantum Physics.  |0 http://scigraph.springernature.com/things/product-market-codes/P19080 
650 2 4 |a Mathematical Physics.  |0 http://scigraph.springernature.com/things/product-market-codes/M35000 
650 2 4 |a Classical Mechanics.  |0 http://scigraph.springernature.com/things/product-market-codes/P21018 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783030183783 
776 0 8 |i Printed edition:  |z 9783030183806 
776 0 8 |i Printed edition:  |z 9783030183813 
856 4 0 |u https://doi.org/10.1007/978-3-030-18379-0  |z Full Text via HEAL-Link 
912 |a ZDB-2-PHA 
950 |a Physics and Astronomy (Springer-11651)