Analysis and Data-Based Reconstruction of Complex Nonlinear Dynamical Systems Using the Methods of Stochastic Processes /

This book focuses on a central question in the field of complex systems: Given a fluctuating (in time or space), uni- or multi-variant sequentially measured set of experimental data (even noisy data), how should one analyse non-parametrically the data, assess underlying trends, uncover characteristi...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Rahimi Tabar, M. Reza (Συγγραφέας, http://id.loc.gov/vocabulary/relators/aut)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Springer, 2019.
Έκδοση:1st ed. 2019.
Σειρά:Understanding Complex Systems,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 05984nam a2200601 4500
001 978-3-030-18472-8
003 DE-He213
005 20191021201135.0
007 cr nn 008mamaa
008 190704s2019 gw | s |||| 0|eng d
020 |a 9783030184728  |9 978-3-030-18472-8 
024 7 |a 10.1007/978-3-030-18472-8  |2 doi 
040 |d GrThAP 
050 4 |a QC174.7-175.36 
072 7 |a PHS  |2 bicssc 
072 7 |a SCI055000  |2 bisacsh 
072 7 |a PHS  |2 thema 
072 7 |a PHDT  |2 thema 
082 0 4 |a 621  |2 23 
100 1 |a Rahimi Tabar, M. Reza.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Analysis and Data-Based Reconstruction of Complex Nonlinear Dynamical Systems  |h [electronic resource] :  |b Using the Methods of Stochastic Processes /  |c by M. Reza Rahimi Tabar. 
250 |a 1st ed. 2019. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2019. 
300 |a XVIII, 280 p. 41 illus., 22 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Understanding Complex Systems,  |x 1860-0832 
505 0 |a 1 Introduction -- 2 Introduction to Stochastic Processes -- 3 Kramers-Moyal Expansion and Fokker-Planck Equation -- 4 Continuous Stochastic Process -- 5 The Langevin Equation and Wiener Process -- 6 Stochastic Integration, It^o and Stratonovich Calculi -- 7 Equivalence of Langevin and Fokker-Planck Equations -- 8 Examples of Stochastic Calculus -- 9 Langevin Dynamics in Higher Dimensions -- 10 Levy Noise Driven Langevin Equation and its Time Series-Based Reconstruction -- 11 Stochastic Processes with Jumps and Non-Vanishing Higher-Order Kramers-Moyal Coefficients -- 12 Jump-Diffusion Processes -- 13 Two-Dimensional (Bivariate) Jump-Diffusion Processes -- 14 Numerical Solution of Stochastic Differential Equations: Diffusion and Jump-Diffusion Processes -- 15 The Friedrich-Peinke Approach to Reconstruction of Dynamical Equation for Time Series: Complexity in View of Stochastic Processes -- 16 How To Set Up Stochastic Equations For Real-World Processes: Markov-Einstein Time Scale -- 17 Reconstruction of Stochastic Dynamical Equations: Exemplary Stationary Diffusion and Jump-Diffusion Processes -- 18 The Kramers-Moyal Coefficients of Non-Stationary Time series in The Presence of Microstructure (Measurement) Noise -- 19 Influence of Finite Time Step in Estimating of the Kramers-Moyal Coefficients -- 20 Distinguishing Diffusive and Jumpy Behaviors in Real-World Time Series -- 21 Reconstruction of Langevin and Jump-Diffusion Dynamics From Empirical Uni- and Bivariate Time Series -- 22 Applications and Outlook -- 23 Epileptic Brain Dynamics. 
520 |a This book focuses on a central question in the field of complex systems: Given a fluctuating (in time or space), uni- or multi-variant sequentially measured set of experimental data (even noisy data), how should one analyse non-parametrically the data, assess underlying trends, uncover characteristics of the fluctuations (including diffusion and jump contributions), and construct a stochastic evolution equation? Here, the term "non-parametrically" exemplifies that all the functions and parameters of the constructed stochastic evolution equation can be determined directly from the measured data. The book provides an overview of methods that have been developed for the analysis of fluctuating time series and of spatially disordered structures. Thanks to its feasibility and simplicity, it has been successfully applied to fluctuating time series and spatially disordered structures of complex systems studied in scientific fields such as physics, astrophysics, meteorology, earth science, engineering, finance, medicine and the neurosciences, and has led to a number of important results. The book also includes the numerical and analytical approaches to the analyses of complex time series that are most common in the physical and natural sciences. Further, it is self-contained and readily accessible to students, scientists, and researchers who are familiar with traditional methods of mathematics, such as ordinary, and partial differential equations. The codes for analysing continuous time series are available in an R package developed by the research group Turbulence, Wind energy and Stochastic (TWiSt) at the Carl von Ossietzky University of Oldenburg under the supervision of Prof. Dr. Joachim Peinke. This package makes it possible to extract the (stochastic) evolution equation underlying a set of data or measurements. 
650 0 |a Statistical physics. 
650 0 |a Dynamical systems. 
650 0 |a System theory. 
650 0 |a Probabilities. 
650 0 |a Economic theory. 
650 0 |a Computational complexity. 
650 0 |a Neurosciences. 
650 1 4 |a Complex Systems.  |0 http://scigraph.springernature.com/things/product-market-codes/P33000 
650 2 4 |a Complex Systems.  |0 http://scigraph.springernature.com/things/product-market-codes/M13090 
650 2 4 |a Probability Theory and Stochastic Processes.  |0 http://scigraph.springernature.com/things/product-market-codes/M27004 
650 2 4 |a Economic Theory/Quantitative Economics/Mathematical Methods.  |0 http://scigraph.springernature.com/things/product-market-codes/W29000 
650 2 4 |a Complexity.  |0 http://scigraph.springernature.com/things/product-market-codes/T11022 
650 2 4 |a Neurosciences.  |0 http://scigraph.springernature.com/things/product-market-codes/B18006 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783030184711 
776 0 8 |i Printed edition:  |z 9783030184735 
776 0 8 |i Printed edition:  |z 9783030184742 
830 0 |a Understanding Complex Systems,  |x 1860-0832 
856 4 0 |u https://doi.org/10.1007/978-3-030-18472-8  |z Full Text via HEAL-Link 
912 |a ZDB-2-PHA 
950 |a Physics and Astronomy (Springer-11651)