Analysis and Data-Based Reconstruction of Complex Nonlinear Dynamical Systems Using the Methods of Stochastic Processes /

This book focuses on a central question in the field of complex systems: Given a fluctuating (in time or space), uni- or multi-variant sequentially measured set of experimental data (even noisy data), how should one analyse non-parametrically the data, assess underlying trends, uncover characteristi...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Rahimi Tabar, M. Reza (Συγγραφέας, http://id.loc.gov/vocabulary/relators/aut)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Springer, 2019.
Έκδοση:1st ed. 2019.
Σειρά:Understanding Complex Systems,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
Πίνακας περιεχομένων:
  • 1 Introduction
  • 2 Introduction to Stochastic Processes
  • 3 Kramers-Moyal Expansion and Fokker-Planck Equation
  • 4 Continuous Stochastic Process
  • 5 The Langevin Equation and Wiener Process
  • 6 Stochastic Integration, It^o and Stratonovich Calculi
  • 7 Equivalence of Langevin and Fokker-Planck Equations
  • 8 Examples of Stochastic Calculus
  • 9 Langevin Dynamics in Higher Dimensions
  • 10 Levy Noise Driven Langevin Equation and its Time Series-Based Reconstruction
  • 11 Stochastic Processes with Jumps and Non-Vanishing Higher-Order Kramers-Moyal Coefficients
  • 12 Jump-Diffusion Processes
  • 13 Two-Dimensional (Bivariate) Jump-Diffusion Processes
  • 14 Numerical Solution of Stochastic Differential Equations: Diffusion and Jump-Diffusion Processes
  • 15 The Friedrich-Peinke Approach to Reconstruction of Dynamical Equation for Time Series: Complexity in View of Stochastic Processes
  • 16 How To Set Up Stochastic Equations For Real-World Processes: Markov-Einstein Time Scale
  • 17 Reconstruction of Stochastic Dynamical Equations: Exemplary Stationary Diffusion and Jump-Diffusion Processes
  • 18 The Kramers-Moyal Coefficients of Non-Stationary Time series in The Presence of Microstructure (Measurement) Noise
  • 19 Influence of Finite Time Step in Estimating of the Kramers-Moyal Coefficients
  • 20 Distinguishing Diffusive and Jumpy Behaviors in Real-World Time Series
  • 21 Reconstruction of Langevin and Jump-Diffusion Dynamics From Empirical Uni- and Bivariate Time Series
  • 22 Applications and Outlook
  • 23 Epileptic Brain Dynamics.