Spatiotemporal Modeling of Cancer Immunotherapy Partial Differential Equation Analysis in R /

The focus of this book is a detailed discussion of a dual cancer vaccine (CV)-immune checkpoint inhibitor (ICI) mathematical model formulated as a system of partial differential equations (PDEs) defining the spatiotemporal distribution of cells and biochemicals during tumor growth. A computer implem...

Full description

Bibliographic Details
Main Author: Schiesser, William E. (Author, http://id.loc.gov/vocabulary/relators/aut)
Corporate Author: SpringerLink (Online service)
Format: Electronic eBook
Language:English
Published: Cham : Springer International Publishing : Imprint: Springer, 2019.
Edition:1st ed. 2019.
Subjects:
Online Access:Full Text via HEAL-Link
LEADER 03603nam a2200493 4500
001 978-3-030-19080-4
003 DE-He213
005 20191022182244.0
007 cr nn 008mamaa
008 190601s2019 gw | s |||| 0|eng d
020 |a 9783030190804  |9 978-3-030-19080-4 
024 7 |a 10.1007/978-3-030-19080-4  |2 doi 
040 |d GrThAP 
050 4 |a R856-R857 
072 7 |a MQW  |2 bicssc 
072 7 |a MED003040  |2 bisacsh 
072 7 |a MQW  |2 thema 
082 0 4 |a 610.28  |2 23 
100 1 |a Schiesser, William E.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Spatiotemporal Modeling of Cancer Immunotherapy   |h [electronic resource] :  |b Partial Differential Equation Analysis in R /  |c by William E. Schiesser. 
250 |a 1st ed. 2019. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2019. 
300 |a VIII, 112 p. 70 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a Fixed Boundary PDE Model Formulation -- Fixed Boundary PDE Model Implementation -- Fixed Boundary PDE Model Output -- Moving Boundary PDE Model Implementation -- Moving Boundary PDE Model Output -- Index. 
520 |a The focus of this book is a detailed discussion of a dual cancer vaccine (CV)-immune checkpoint inhibitor (ICI) mathematical model formulated as a system of partial differential equations (PDEs) defining the spatiotemporal distribution of cells and biochemicals during tumor growth. A computer implementation of the model is discussed in detail for the quantitative evaluation of CV-ICI therapy. The coding (programming) consists of a series of routines in R, a quality, open-source scientific computing system that is readily available from the internet. The routines are based on the method of lines (MOL), a general PDE algorithm that can be executed on modest computers within the basic R system. The reader can download and use the routines to confirm the model solutions reported in the book, then experiment with the model by varying the parameters and modifying/extending the equations, and even studying alternative models with the PDE methodology demonstrated by the CV-ICI model. Spatiotemporal Modeling of Cancer Immunotherapy: Partial Differential Equation Analysis in R facilitates the use of the model, and more generally, computer- based analysis of cancer immunotherapy mathematical models, as a step toward the development and quantitative evaluation of the immunotherapy approach to the treatment of cancer. 
650 0 |a Biomedical engineering. 
650 0 |a Mathematical models. 
650 0 |a Cancer research. 
650 1 4 |a Biomedical Engineering/Biotechnology.  |0 http://scigraph.springernature.com/things/product-market-codes/B24000 
650 2 4 |a Mathematical Modeling and Industrial Mathematics.  |0 http://scigraph.springernature.com/things/product-market-codes/M14068 
650 2 4 |a Cancer Research.  |0 http://scigraph.springernature.com/things/product-market-codes/B11001 
650 2 4 |a Biomedical Engineering and Bioengineering.  |0 http://scigraph.springernature.com/things/product-market-codes/T2700X 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783030176358 
776 0 8 |i Printed edition:  |z 9783030176365 
776 0 8 |i Printed edition:  |z 9783030191375 
856 4 0 |u https://doi.org/10.1007/978-3-030-19080-4  |z Full Text via HEAL-Link 
912 |a ZDB-2-SBL 
950 |a Biomedical and Life Sciences (Springer-11642)