Efficacy Analysis in Clinical Trials an Update Efficacy Analysis in an Era of Machine Learning /

Machine learning and big data is hot. It is, however, virtually unused in clinical trials. This is so, because randomization is applied to even out multiple variables. Modern medical computer files often involve hundreds of variables like genes and other laboratory values, and computationally intens...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Cleophas, Ton J. (Συγγραφέας, http://id.loc.gov/vocabulary/relators/aut), Zwinderman, Aeilko H. (http://id.loc.gov/vocabulary/relators/aut)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Springer, 2019.
Έκδοση:1st ed. 2019.
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03773nam a2200493 4500
001 978-3-030-19918-0
003 DE-He213
005 20191024212624.0
007 cr nn 008mamaa
008 190903s2019 gw | s |||| 0|eng d
020 |a 9783030199180  |9 978-3-030-19918-0 
024 7 |a 10.1007/978-3-030-19918-0  |2 doi 
040 |d GrThAP 
050 4 |a R-RZ 
072 7 |a MBGR  |2 bicssc 
072 7 |a MED000000  |2 bisacsh 
072 7 |a MBGR  |2 thema 
082 0 4 |a 610  |2 23 
100 1 |a Cleophas, Ton J.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Efficacy Analysis in Clinical Trials an Update  |h [electronic resource] :  |b Efficacy Analysis in an Era of Machine Learning /  |c by Ton J. Cleophas, Aeilko H. Zwinderman. 
250 |a 1st ed. 2019. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2019. 
300 |a XI, 304 p. 295 illus., 44 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a Preface -- Traditional and Machine-Learning Methods for Efficacy Analysis -- Optimal-Scaling for Efficacy Analysis -- Ratio-Statistic for Efficacy Analysis -- Ratio-Statistic for Efficacy Analysis -- Complex-Samples for Efficacy Analysis -- Bayesian-Networks for Efficacy Analysis -- Evolutionary-Operations for Efficacy Analysis -- Automatic-Newton-Modeling for Efficacy Analysis -- High-Risk-Bins for Efficacy Analysis -- Balanced-Iterative-Reducing-Hierarchy for Efficacy Analysis -- Cluster-Analysis for Efficacy Analysis -- Multidimensional-Scaling for Efficacy Analysis -- Binary Decision-Trees for Efficacy Analysis -- Continuous Decision-Trees for Efficacy Analysis -- Automatic-Data-Mining for Efficacy Analysis -- Support-Vector-Machines for Efficacy Analysis -- Neural-Networks for Efficacy Analysis -- Ensembled-Accuracies for Efficacy Analysis -- Ensembled-Correlations for Efficacy Analysis -- Gamma-Distributions for Efficacy Analysis -- Validation with Big Data, a Big Issue -- Index. 
520 |a Machine learning and big data is hot. It is, however, virtually unused in clinical trials. This is so, because randomization is applied to even out multiple variables. Modern medical computer files often involve hundreds of variables like genes and other laboratory values, and computationally intensive methods are required. This is the first publication of clinical trials that have been systematically analyzed with machine learning. In addition, all of the machine learning analyses were tested against traditional analyses. Step by step statistics for self-assessments are included. The authors conclude, that machine learning is often more informative, and provides better sensitivities of testing than traditional analytic methods do. 
650 0 |a Medicine. 
650 0 |a Statistics . 
650 0 |a Biostatistics. 
650 1 4 |a Biomedicine, general.  |0 http://scigraph.springernature.com/things/product-market-codes/B0000X 
650 2 4 |a Statistics for Life Sciences, Medicine, Health Sciences.  |0 http://scigraph.springernature.com/things/product-market-codes/S17030 
650 2 4 |a Biostatistics.  |0 http://scigraph.springernature.com/things/product-market-codes/L15020 
700 1 |a Zwinderman, Aeilko H.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783030199173 
776 0 8 |i Printed edition:  |z 9783030199197 
776 0 8 |i Printed edition:  |z 9783030199203 
856 4 0 |u https://doi.org/10.1007/978-3-030-19918-0  |z Full Text via HEAL-Link 
912 |a ZDB-2-SBL 
950 |a Biomedical and Life Sciences (Springer-11642)