New Statistical Developments in Data Science SIS 2017, Florence, Italy, June 28-30 /

This volume collects the extended versions of papers presented at the SIS Conference "Statistics and Data Science: new challenges, new generations", held in Florence, Italy on June 28-30, 2017. Highlighting the central role of statistics and data analysis methods in the era of Data Science...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Άλλοι συγγραφείς: Petrucci, Alessandra (Επιμελητής έκδοσης, http://id.loc.gov/vocabulary/relators/edt), Racioppi, Filomena (Επιμελητής έκδοσης, http://id.loc.gov/vocabulary/relators/edt), Verde, Rosanna (Επιμελητής έκδοσης, http://id.loc.gov/vocabulary/relators/edt)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Springer, 2019.
Έκδοση:1st ed. 2019.
Σειρά:Springer Proceedings in Mathematics & Statistics, 288
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
Πίνακας περιεχομένων:
  • PART I - Complex data analytics: A. Balzanella et al., Monitoring the spatial correlation among functional data streams through Moran's Index
  • O. Banouar and S. Raghay, User query enrichment for personalized access to data through ontologies using matrix completion method
  • C. Drago, Clustering Communities using Interval K-Means
  • F. Murtagh, Text Mining and Big Textual Data: Relevant Statistical Models
  • G. Ragozini et al., A three-way data analysis approach for analyzing multiplex networks
  • M. Ruggieri et al., Comparing FPCA based on conditional quantile functions and FPCA based on conditional mean function
  • F. Santelli et al., Statistical archetypal analysis for cognitive categorization
  • A. Vanacore and M. S. Pellegrino, Inferring rater agreement with ordinal classification
  • PART II - Knowledge based methods: J. Koskinen et al., Bayesian analysis of ERG models for multilevel, multiplex, and multilayered networks with sampled or missing data
  • C. Scricciolo, Bayesian Kantorovich Deconvolution in Finite Mixture Models
  • A. Sottosanti et al., Discovering and Locating High-Energy Extra-Galactic\Sources by Bayesian Mixture Modelling
  • F. Stefanini and G. Callegaro, Bayesian estimation of causal effects in carcinogenicity tests based upon CTA
  • M. Subbiah et al., Performance Comparison of Heterogeneity Measures for count data models in Bayesian Perspective
  • PART III - Sampling techniques for Big Data exploration: M. S. Andreano et al., Sampling and modelling issues using Big Data in now-casting
  • M. D'Alò et al., Sample design for the integration of population census and social surveys
  • C. De Vitiis et al., Sampling schemes using scanner data for the consumer price index
  • S. Polettini and S. Arima, An investigation of Hierarchical and Empirical Bayesian small area predictors under measurement error
  • E. Rocco, Indicators for monitoring the survey data quality when non-response or a convenience sample occurs
  • PART IV - Data Science methods for social and population studies: P. Balduzzi et al., The propensity to leave the country of origin of young Europeans
  • F. Bassi et al., New Insights on Student Evaluation of Teaching in Italy
  • A. Bikauskaite and D. Buono, Eurostat methodological network: Skills mapping for a collaborative statistical office
  • M. Costa, The evaluation of the inequality between population subgroups
  • M. Manisera et al., Basketball analytics using spatial tracking data
  • I. Morlini and M. Scorza, New fuzzy composite indicators for dyslexia
  • A. Righi et al., Who tweets in Italian? Demographic characteristics of Twitter users
  • PART V - Applying Data Science in economics and labour market: A. Agapitov et al., An approach to developing a scoring system for peer-to-peer (p2p) lending platform
  • P. Mariani et al., What do employers look for when hiring new graduates? Answers from the Electus survey
  • A. Mazza and A. Punzo, Modeling Household Income with Contaminated Unimodal Distributions
  • G. Punzo et al., Endowments and rewards in the labour market: their role in changing wage inequality in Europe
  • V. Voytsekhovska and O. Butzbach, The approach towards the analysis of wage distribution equality dynamics in Poland based on linear dependences
  • PART VI - Mathematical statistics for Data Science: R. Fontana and F. Rapallo, Unions of Orthogonal Arrays and their aberrations via Hilbert bases
  • F. Lagona, A copula-based hidden Markov model for toroidal time Series
  • A. Lanteri et al., A biased Kaczmarz algorithm for clustered equations
  • A. Lepore, Nearly Unbiased Probability Plots for Extreme Value Distributions
  • V. Mameli et al., Estimating High-Dimensional Regression Models with Bootstrap group Penalties.