Cause Effect Pairs in Machine Learning
This book presents ground-breaking advances in the domain of causal structure learning. The problem of distinguishing cause from effect ("Does altitude cause a change in atmospheric pressure, or vice versa?") is here cast as a binary classification problem, to be tackled by machine learnin...
Συγγραφή απο Οργανισμό/Αρχή: | |
---|---|
Άλλοι συγγραφείς: | , , |
Μορφή: | Ηλεκτρονική πηγή Ηλ. βιβλίο |
Γλώσσα: | English |
Έκδοση: |
Cham :
Springer International Publishing : Imprint: Springer,
2019.
|
Έκδοση: | 1st ed. 2019. |
Σειρά: | The Springer Series on Challenges in Machine Learning,
|
Θέματα: | |
Διαθέσιμο Online: | Full Text via HEAL-Link |
Πίνακας περιεχομένων:
- 1. The cause-effect problem: motivation, ideas, and popular misconceptions
- 2. Evaluation methods of cause-effect pairs
- 3. Learning Bivariate Functional Causal Models
- 4. Discriminant Learning Machines
- 5. Cause-Effect Pairs in Time Series with a Focus on Econometrics
- 6. Beyond cause-effect pairs
- 7. Results of the Cause-Effect Pair Challenge
- 8. Non-linear Causal Inference using Gaussianity Measures
- 9. From Dependency to Causality: A Machine Learning Approach
- 10. Pattern-based Causal Feature Extraction
- 11. Training Gradient Boosting Machines using Curve-fitting and Information-theoretic Features for Causal Direction Detection
- 12. Conditional distribution variability measures for causality detection
- 13. Feature importance in causal inference for numerical and categorical variables
- 14. Markov Blanket Ranking using Kernel-based Conditional Dependence Measures.