Cause Effect Pairs in Machine Learning

This book presents ground-breaking advances in the domain of causal structure learning. The problem of distinguishing cause from effect ("Does altitude cause a change in atmospheric pressure, or vice versa?") is here cast as a binary classification problem, to be tackled by machine learnin...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Άλλοι συγγραφείς: Guyon, Isabelle (Επιμελητής έκδοσης, http://id.loc.gov/vocabulary/relators/edt), Statnikov, Alexander (Επιμελητής έκδοσης, http://id.loc.gov/vocabulary/relators/edt), Batu, Berna Bakir (Επιμελητής έκδοσης, http://id.loc.gov/vocabulary/relators/edt)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Springer, 2019.
Έκδοση:1st ed. 2019.
Σειρά:The Springer Series on Challenges in Machine Learning,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
Πίνακας περιεχομένων:
  • 1. The cause-effect problem: motivation, ideas, and popular misconceptions
  • 2. Evaluation methods of cause-effect pairs
  • 3. Learning Bivariate Functional Causal Models
  • 4. Discriminant Learning Machines
  • 5. Cause-Effect Pairs in Time Series with a Focus on Econometrics
  • 6. Beyond cause-effect pairs
  • 7. Results of the Cause-Effect Pair Challenge
  • 8. Non-linear Causal Inference using Gaussianity Measures
  • 9. From Dependency to Causality: A Machine Learning Approach
  • 10. Pattern-based Causal Feature Extraction
  • 11. Training Gradient Boosting Machines using Curve-fitting and Information-theoretic Features for Causal Direction Detection
  • 12. Conditional distribution variability measures for causality detection
  • 13. Feature importance in causal inference for numerical and categorical variables
  • 14. Markov Blanket Ranking using Kernel-based Conditional Dependence Measures.