Searching for 2D Superconductivity in La2−xSrxCuO4 Single Crystals

A new experimental method - the "Stiffnessometer", is developed to measure elementary properties of a superconductor, including the superconducting stiffness and the critical current. This technique has many advantages over existing methods, such as: the ability to measure these properties...

Full description

Bibliographic Details
Main Author: Kapon, Itzik (Author, http://id.loc.gov/vocabulary/relators/aut)
Corporate Author: SpringerLink (Online service)
Format: Electronic eBook
Language:English
Published: Cham : Springer International Publishing : Imprint: Springer, 2019.
Edition:1st ed. 2019.
Series:Springer Theses, Recognizing Outstanding Ph.D. Research,
Subjects:
Online Access:Full Text via HEAL-Link
Description
Summary:A new experimental method - the "Stiffnessometer", is developed to measure elementary properties of a superconductor, including the superconducting stiffness and the critical current. This technique has many advantages over existing methods, such as: the ability to measure these properties while minimally disturbing the system; the ability to measure large penetration depths (comparable to sample size), as necessary when approaching the critical temperature; and the ability to measure critical currents without attaching contacts and heating the sample. The power of this method is demonstrated in a study of the penetration depth of LSCO, where striking evidence is found for two separate critical temperatures for the in-plane and out-of-plane directions. The results in the thesis are novel, important and currently have no theoretical explanation. The stiffnessometer in a tool with great potential to explore new grounds in condensed matter physics. .
Physical Description:XVII, 63 p. 42 illus., 37 illus. in color. online resource.
ISBN:9783030230616
ISSN:2190-5053
DOI:10.1007/978-3-030-23061-6