Quantitative Intertextuality Analyzing the Markers of Information Reuse /

This book introduces quantitative intertextuality, a new approach to the algorithmic study of information reuse in text, sound and images. Employing a variety of tools from machine learning, natural language processing, and computer vision, readers will learn to trace patterns of reuse across divers...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Forstall, Christopher W. (Συγγραφέας, http://id.loc.gov/vocabulary/relators/aut), Scheirer, Walter J. (http://id.loc.gov/vocabulary/relators/aut)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Springer, 2019.
Έκδοση:1st ed. 2019.
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 04904nam a2200529 4500
001 978-3-030-23415-7
003 DE-He213
005 20191023161648.0
007 cr nn 008mamaa
008 190710s2019 gw | s |||| 0|eng d
020 |a 9783030234157  |9 978-3-030-23415-7 
024 7 |a 10.1007/978-3-030-23415-7  |2 doi 
040 |d GrThAP 
050 4 |a Q334-342 
072 7 |a UYQ  |2 bicssc 
072 7 |a COM004000  |2 bisacsh 
072 7 |a UYQ  |2 thema 
082 0 4 |a 006.3  |2 23 
100 1 |a Forstall, Christopher W.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Quantitative Intertextuality  |h [electronic resource] :  |b Analyzing the Markers of Information Reuse /  |c by Christopher W. Forstall, Walter J. Scheirer. 
250 |a 1st ed. 2019. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2019. 
300 |a XVII, 189 p. 25 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a What is Quantitative Intertextuality -- Statistical Learning as a Model for Intertextuality -- Lexical Matching: Text Reuse as Intertextuality -- Semantic Matching: Tracing Reuse by Meaning -- Sound Matching: Capturing Reuse in the Primitive Elements of Language -- Image Matching: Detecting the Reuse of Visual Elements -- Meta-Matching: Combining Evidence From Heterogeneous Sources -- Parting Thoughts. 
520 |a This book introduces quantitative intertextuality, a new approach to the algorithmic study of information reuse in text, sound and images. Employing a variety of tools from machine learning, natural language processing, and computer vision, readers will learn to trace patterns of reuse across diverse sources for scholarly work and practical applications. The respective chapters share highly novel methodological insights in order to guide the reader through the basics of intertextuality. In Part 1, "Theory", the theoretical aspects of intertextuality are introduced, leading to a discussion of how they can be embodied by quantitative methods. In Part 2, "Practice", specific quantitative methods are described to establish a set of automated procedures for the practice of quantitative intertextuality. Each chapter in Part 2 begins with a general introduction to a major concept (e.g., lexical matching, sound matching, semantic matching), followed by a case study (e.g., detecting allusions to a popular television show in tweets, quantifying sound reuse in Romantic poetry, identifying influences in fan faction by thematic matching), and finally the development of an algorithm that can be used to reveal parallels in the relevant contexts. Because this book is intended as a "gentle" introduction, the emphasis is often on simple yet effective algorithms for a given matching task. A set of exercises is included at the end of each chapter, giving readers the chance to explore more cutting-edge solutions and novel aspects to the material at hand. Additionally, the book's companion website includes software (R and C++ library code) and all of the source data for the examples in the book, as well as supplemental content (slides, high-resolution images, additional results) that may prove helpful for exploring the different facets of quantitative intertextuality that are presented in each chapter. Given its interdisciplinary nature, the book will appeal to a broad audience. From practitioners specializing in forensics to students of cultural studies, readers with diverse backgrounds (e.g., in the social sciences, natural language processing, or computer vision) will find valuable insights. 
650 0 |a Artificial intelligence. 
650 0 |a Information storage and retrieval. 
650 0 |a Pattern recognition. 
650 0 |a Application software. 
650 0 |a Cultural studies. 
650 1 4 |a Artificial Intelligence.  |0 http://scigraph.springernature.com/things/product-market-codes/I21000 
650 2 4 |a Information Storage and Retrieval.  |0 http://scigraph.springernature.com/things/product-market-codes/I18032 
650 2 4 |a Pattern Recognition.  |0 http://scigraph.springernature.com/things/product-market-codes/I2203X 
650 2 4 |a Computer Appl. in Social and Behavioral Sciences.  |0 http://scigraph.springernature.com/things/product-market-codes/I23028 
650 2 4 |a Cultural Studies.  |0 http://scigraph.springernature.com/things/product-market-codes/X22040 
700 1 |a Scheirer, Walter J.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783030234133 
776 0 8 |i Printed edition:  |z 9783030234140 
856 4 0 |u https://doi.org/10.1007/978-3-030-23415-7  |z Full Text via HEAL-Link 
912 |a ZDB-2-SCS 
950 |a Computer Science (Springer-11645)