Diophantine Equations and Power Integral Bases Theory and Algorithms /

This monograph outlines the structure of index form equations, and makes clear their relationship to other classical types of Diophantine equations. In order to more efficiently determine generators of power integral bases, several algorithms and methods are presented to readers, many of which are n...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Gaál, István (Συγγραφέας, http://id.loc.gov/vocabulary/relators/aut)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Birkhäuser, 2019.
Έκδοση:2nd ed. 2019.
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03389nam a2200433 4500
001 978-3-030-23865-0
003 DE-He213
005 20190903181613.0
007 cr nn 008mamaa
008 190903s2019 gw | s |||| 0|eng d
020 |a 9783030238650  |9 978-3-030-23865-0 
024 7 |a 10.1007/978-3-030-23865-0  |2 doi 
040 |d GrThAP 
050 4 |a QA241-247.5 
072 7 |a PBH  |2 bicssc 
072 7 |a MAT022000  |2 bisacsh 
072 7 |a PBH  |2 thema 
082 0 4 |a 512.7  |2 23 
100 1 |a Gaál, István.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Diophantine Equations and Power Integral Bases  |h [electronic resource] :  |b Theory and Algorithms /  |c by István Gaál. 
250 |a 2nd ed. 2019. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Birkhäuser,  |c 2019. 
300 |a XXII, 326 p. 2 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a Introduction -- Auxiliary results, tools -- Thue equations -- Inhomogeneous Thue equations -- Relative Thue equations -- The resolution of norm form equations -- Index form equations in general -- Cubic fields -- Quartic fields -- Quintic fields -- Sextic fields -- Pure fields -- Cubic relative extensions -- Quartic relative extensions -- Some higher degree fields -- Tables. 
520 |a This monograph outlines the structure of index form equations, and makes clear their relationship to other classical types of Diophantine equations. In order to more efficiently determine generators of power integral bases, several algorithms and methods are presented to readers, many of which are new developments in the field. Additionally, readers are presented with various types of number fields to better facilitate their understanding of how index form equations can be solved. By introducing methods like Baker-type estimates, reduction methods, and enumeration algorithms, the material can be applied to a wide variety of Diophantine equations. This new edition provides new results, more topics, and an expanded perspective on algebraic number theory and Diophantine Analysis. Notations, definitions, and tools are presented before moving on to applications to Thue equations and norm form equations. The structure of index forms is explained, which allows readers to approach several types of number fields with ease. Detailed numerical examples, particularly the tables of data calculated by the presented methods at the end of the book, will help readers see how the material can be applied. Diophantine Equations and Power Integral Bases will be ideal for graduate students and researchers interested in the area. A basic understanding of number fields and algebraic methods to solve Diophantine equations is required. 
650 0 |a Number theory. 
650 1 4 |a Number Theory.  |0 http://scigraph.springernature.com/things/product-market-codes/M25001 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783030238643 
776 0 8 |i Printed edition:  |z 9783030238667 
776 0 8 |i Printed edition:  |z 9783030238674 
856 4 0 |u https://doi.org/10.1007/978-3-030-23865-0  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)