Centrality and Diversity in Search Roles in A.I., Machine Learning, Social Networks, and Pattern Recognition /

The concepts of centrality and diversity are highly important in search algorithms, and play central roles in applications of artificial intelligence (AI), machine learning (ML), social networks, and pattern recognition. This work examines the significance of centrality and diversity in representati...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Murty, M.N (Συγγραφέας, http://id.loc.gov/vocabulary/relators/aut), Biswas, Anirban (http://id.loc.gov/vocabulary/relators/aut)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Springer, 2019.
Έκδοση:1st ed. 2019.
Σειρά:SpringerBriefs in Intelligent Systems, Artificial Intelligence, Multiagent Systems, and Cognitive Robotics,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
Περιγραφή
Περίληψη:The concepts of centrality and diversity are highly important in search algorithms, and play central roles in applications of artificial intelligence (AI), machine learning (ML), social networks, and pattern recognition. This work examines the significance of centrality and diversity in representation, regression, ranking, clustering, optimization, and classification. The text is designed to be accessible to a broad readership. Requiring only a basic background in undergraduate-level mathematics, the work is suitable for senior undergraduate and graduate students, as well as researchers working in machine learning, data mining, social networks, and pattern recognition. .
Φυσική περιγραφή:XI, 94 p. 17 illus., 5 illus. in color. online resource.
ISBN:9783030247133
ISSN:2196-548X
DOI:10.1007/978-3-030-24713-3