Metal Oxides/Chalcogenides and Composites Emerging Materials for Electrochemical Water Splitting /

This book covers the recent development of metal oxides, hydroxides and their carbon composites for electrochemical oxidation of water in the production of hydrogen and oxygen as fuels. It includes a detailed discussion on synthesis methodologies for the metal oxides/hydroxides, structural/morpholog...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Samantara, Aneeya Kumar (Συγγραφέας, http://id.loc.gov/vocabulary/relators/aut), Ratha, Satyajit (http://id.loc.gov/vocabulary/relators/aut)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Springer, 2019.
Έκδοση:1st ed. 2019.
Σειρά:SpringerBriefs in Materials,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 04900nam a2200553 4500
001 978-3-030-24861-1
003 DE-He213
005 20191220130855.0
007 cr nn 008mamaa
008 190809s2019 gw | s |||| 0|eng d
020 |a 9783030248611  |9 978-3-030-24861-1 
024 7 |a 10.1007/978-3-030-24861-1  |2 doi 
040 |d GrThAP 
050 4 |a TA401-492 
050 4 |a QC72-QC73.8 
072 7 |a TGM  |2 bicssc 
072 7 |a TEC021000  |2 bisacsh 
072 7 |a TGM  |2 thema 
082 0 4 |a 620.11  |2 23 
100 1 |a Samantara, Aneeya Kumar.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Metal Oxides/Chalcogenides and Composites  |h [electronic resource] :  |b Emerging Materials for Electrochemical Water Splitting /  |c by Aneeya Kumar Samantara, Satyajit Ratha. 
250 |a 1st ed. 2019. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2019. 
300 |a XVII, 83 p. 23 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a SpringerBriefs in Materials,  |x 2192-1091 
505 0 |a Chapter1: Introduction -- Chapter2: Types of Electrolysis of Water -- Chapter3: Mechanism and key parameters for catalyst evaluation -- Chapter4: Electroactive Materials -- Chapter5: Potential Applications of Electrolysis for Commercial Hydrogen Production -- Chapter6: Summary and Conclusion. 
520 |a This book covers the recent development of metal oxides, hydroxides and their carbon composites for electrochemical oxidation of water in the production of hydrogen and oxygen as fuels. It includes a detailed discussion on synthesis methodologies for the metal oxides/hydroxides, structural/morphological characterizations, and the key parameters (Tafel plot, Turnover frequency, Faradic efficiency, overpotential, long cycle life etc.) needed to evaluate the electrocatalytic activity of the materials. Additionally, the mechanism behind the electro oxidation process is presented. Readers will find a comprehensive source on the close correlation between metal oxides, hydroxides, composites, and their properties and importance in the generation of hydrogen and oxygen from water. The depletion of fossil fuels from the earth's crust, and related environmental issues such as climate change, demand that we search for alternative energy resources to achieve some form of sustainable future. In this regard, much scientific research has been devoted to technologies such as solar cells, wind turbines, fuel cells etc. Among them fuel cells attract much attention because of their versatility and efficiency. In fuel cells, different fuels such as hydrogen, CO2, alcohols, acids, methane, oxygen/air, etc. are used as the fuel, and catalysts are employed to produce a chemical reaction for generating electricity. Hence, it is very important to produce these fuels in an efficient, eco-friendly, and cost effective manner. The electrochemical splitting of water is an environmentally friendly process to produce hydrogen (the greener fuel used in fuel cells), but the efficiencies of these hydrogen evolution reactions (cathodic half reaction) are strongly dependent on the anodic half reaction (oxygen evolution reaction), i.e., the better the anodic half, the better will be the cathodic reaction. Further, this oxygen evolution reaction depends on the types of active electrocatalysts used. Though many more synthetic approaches have been explored and different electrocatalysts developed, oxide and hydroxide-based nanomaterials and composites (with graphene, carbon nanotubes etc.) show better performance. This may be due to the availability of more catalytic surface area and electro active centers to carry out the catalysis process. 
650 0 |a Materials science. 
650 0 |a Force and energy. 
650 0 |a Energy storage. 
650 0 |a Electrochemistry. 
650 0 |a Metals. 
650 1 4 |a Energy Materials.  |0 http://scigraph.springernature.com/things/product-market-codes/Z21000 
650 2 4 |a Energy Storage.  |0 http://scigraph.springernature.com/things/product-market-codes/116000 
650 2 4 |a Electrochemistry.  |0 http://scigraph.springernature.com/things/product-market-codes/C21010 
650 2 4 |a Metallic Materials.  |0 http://scigraph.springernature.com/things/product-market-codes/Z16000 
700 1 |a Ratha, Satyajit.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783030248604 
776 0 8 |i Printed edition:  |z 9783030248628 
830 0 |a SpringerBriefs in Materials,  |x 2192-1091 
856 4 0 |u https://doi.org/10.1007/978-3-030-24861-1  |z Full Text via HEAL-Link 
912 |a ZDB-2-CMS 
950 |a Chemistry and Materials Science (Springer-11644)