Effective Statistical Learning Methods for Actuaries I GLMs and Extensions /

This book summarizes the state of the art in generalized linear models (GLMs) and their various extensions: GAMs, mixed models and credibility, and some nonlinear variants (GNMs). In order to deal with tail events, analytical tools from Extreme Value Theory are presented. Going beyond mean modeling,...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Denuit, Michel (Συγγραφέας, http://id.loc.gov/vocabulary/relators/aut), Hainaut, Donatien (http://id.loc.gov/vocabulary/relators/aut), Trufin, Julien (http://id.loc.gov/vocabulary/relators/aut)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Springer, 2019.
Έκδοση:1st ed. 2019.
Σειρά:Springer Actuarial Lecture Notes,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03754nam a2200493 4500
001 978-3-030-25820-7
003 DE-He213
005 20191027043050.0
007 cr nn 008mamaa
008 190903s2019 gw | s |||| 0|eng d
020 |a 9783030258207  |9 978-3-030-25820-7 
024 7 |a 10.1007/978-3-030-25820-7  |2 doi 
040 |d GrThAP 
050 4 |a HG8779-8793 
072 7 |a KFFN  |2 bicssc 
072 7 |a BUS033000  |2 bisacsh 
072 7 |a KFFN  |2 thema 
082 0 4 |a 368.01  |2 23 
100 1 |a Denuit, Michel.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Effective Statistical Learning Methods for Actuaries I  |h [electronic resource] :  |b GLMs and Extensions /  |c by Michel Denuit, Donatien Hainaut, Julien Trufin. 
250 |a 1st ed. 2019. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2019. 
300 |a XVI, 441 p. 82 illus., 23 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Springer Actuarial Lecture Notes,  |x 2523-3289 
505 0 |a Preface -- Part I: LOSS MODELS.-1. Insurance Risk Classification.-Exponential Dispersion (ED) Distributions.-3.-Maximum Likelihood Estimation.-Part II LINEAR MODELS.-4. Generalized Linear Models (GLMs) -- 5.-Over-dispersion, credibility adjustments, mixed models, and regularization.-Part III ADDITIVE MODELS -- 6 Generalized Additive Models (GAMs) -- 7. Beyond Mean Modeling: Double GLMs and GAMs for Location, Scale and Shape (GAMLSS) -- Part IV SPECIAL TOPICS -- 8. Some Generalized Non-Linear Models (GNMs) -- 9 Extreme Value Models -- References. 
520 |a This book summarizes the state of the art in generalized linear models (GLMs) and their various extensions: GAMs, mixed models and credibility, and some nonlinear variants (GNMs). In order to deal with tail events, analytical tools from Extreme Value Theory are presented. Going beyond mean modeling, it considers volatility modeling (double GLMs) and the general modeling of location, scale and shape parameters (GAMLSS). Actuaries need these advanced analytical tools to turn the massive data sets now at their disposal into opportunities. The exposition alternates between methodological aspects and case studies, providing numerical illustrations using the R statistical software. The technical prerequisites are kept at a reasonable level in order to reach a broad readership. This is the first of three volumes entitled Effective Statistical Learning Methods for Actuaries. Written by actuaries for actuaries, this series offers a comprehensive overview of insurance data analytics with applications to P&C, life and health insurance. Although closely related to the other two volumes, this volume can be read independently. 
650 0 |a Actuarial science. 
650 0 |a Statistics . 
650 1 4 |a Actuarial Sciences.  |0 http://scigraph.springernature.com/things/product-market-codes/M13080 
650 2 4 |a Statistics for Business, Management, Economics, Finance, Insurance.  |0 http://scigraph.springernature.com/things/product-market-codes/S17010 
700 1 |a Hainaut, Donatien.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
700 1 |a Trufin, Julien.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783030258191 
776 0 8 |i Printed edition:  |z 9783030258214 
830 0 |a Springer Actuarial Lecture Notes,  |x 2523-3289 
856 4 0 |u https://doi.org/10.1007/978-3-030-25820-7  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)