Counting Lattice Paths Using Fourier Methods

This monograph introduces a novel and effective approach to counting lattice paths by using the discrete Fourier transform (DFT) as a type of periodic generating function. Utilizing a previously unexplored connection between combinatorics and Fourier analysis, this method will allow readers to move...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Ault, Shaun (Συγγραφέας, http://id.loc.gov/vocabulary/relators/aut), Kicey, Charles (http://id.loc.gov/vocabulary/relators/aut)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Birkhäuser, 2019.
Έκδοση:1st ed. 2019.
Σειρά:Lecture Notes in Applied and Numerical Harmonic Analysis,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03642nam a2200505 4500
001 978-3-030-26696-7
003 DE-He213
005 20190830132830.0
007 cr nn 008mamaa
008 190830s2019 gw | s |||| 0|eng d
020 |a 9783030266967  |9 978-3-030-26696-7 
024 7 |a 10.1007/978-3-030-26696-7  |2 doi 
040 |d GrThAP 
050 4 |a QA403.5-404.5 
072 7 |a PBKF  |2 bicssc 
072 7 |a MAT034000  |2 bisacsh 
072 7 |a PBKF  |2 thema 
082 0 4 |a 515.2433  |2 23 
100 1 |a Ault, Shaun.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Counting Lattice Paths Using Fourier Methods  |h [electronic resource] /  |c by Shaun Ault, Charles Kicey. 
250 |a 1st ed. 2019. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Birkhäuser,  |c 2019. 
300 |a XII, 136 p. 60 illus., 1 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Lecture Notes in Applied and Numerical Harmonic Analysis,  |x 2512-6482 
505 0 |a Lattice Paths and Corridors -- One-Dimensional Lattice Walks -- Lattice Walks in Higher Dimensions -- Corridor State Space -- Review: Complex Numbers -- Triangular Lattices -- Selected Solutions -- Index. 
520 |a This monograph introduces a novel and effective approach to counting lattice paths by using the discrete Fourier transform (DFT) as a type of periodic generating function. Utilizing a previously unexplored connection between combinatorics and Fourier analysis, this method will allow readers to move to higher-dimensional lattice path problems with ease. The technique is carefully developed in the first three chapters using the algebraic properties of the DFT, moving from one-dimensional problems to higher dimensions. In the following chapter, the discussion turns to geometric properties of the DFT in order to study the corridor state space. Each chapter poses open-ended questions and exercises to prompt further practice and future research. Two appendices are also provided, which cover complex variables and non-rectangular lattices, thus ensuring the text will be self-contained and serve as a valued reference. Counting Lattice Paths Using Fourier Methods is ideal for upper-undergraduates and graduate students studying combinatorics or other areas of mathematics, as well as computer science or physics. Instructors will also find this a valuable resource for use in their seminars. Readers should have a firm understanding of calculus, including integration, sequences, and series, as well as a familiarity with proofs and elementary linear algebra. 
650 0 |a Fourier analysis. 
650 0 |a Harmonic analysis. 
650 0 |a Combinatorics. 
650 1 4 |a Fourier Analysis.  |0 http://scigraph.springernature.com/things/product-market-codes/M12058 
650 2 4 |a Abstract Harmonic Analysis.  |0 http://scigraph.springernature.com/things/product-market-codes/M12015 
650 2 4 |a Combinatorics.  |0 http://scigraph.springernature.com/things/product-market-codes/M29010 
700 1 |a Kicey, Charles.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783030266950 
776 0 8 |i Printed edition:  |z 9783030266974 
830 0 |a Lecture Notes in Applied and Numerical Harmonic Analysis,  |x 2512-6482 
856 4 0 |u https://doi.org/10.1007/978-3-030-26696-7  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)