Introduction to Real Analysis

Developed over years of classroom use, this textbook provides a clear and accessible approach to real analysis. This modern interpretation is based on the author's lecture notes and has been meticulously tailored to motivate students and inspire readers to explore the material, and to continue...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Heil, Christopher (Συγγραφέας, http://id.loc.gov/vocabulary/relators/aut)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Springer, 2019.
Έκδοση:1st ed. 2019.
Σειρά:Graduate Texts in Mathematics, 280
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 04087nam a2200541 4500
001 978-3-030-26903-6
003 DE-He213
005 20191023201814.0
007 cr nn 008mamaa
008 190720s2019 gw | s |||| 0|eng d
020 |a 9783030269036  |9 978-3-030-26903-6 
024 7 |a 10.1007/978-3-030-26903-6  |2 doi 
040 |d GrThAP 
050 4 |a QA312-312.5 
072 7 |a PBKL  |2 bicssc 
072 7 |a MAT034000  |2 bisacsh 
072 7 |a PBKL  |2 thema 
082 0 4 |a 515.42  |2 23 
100 1 |a Heil, Christopher.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Introduction to Real Analysis  |h [electronic resource] /  |c by Christopher Heil. 
250 |a 1st ed. 2019. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2019. 
300 |a XXXII, 386 p. 1 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Graduate Texts in Mathematics,  |x 0072-5285 ;  |v 280 
505 0 |a Preliminaries -- 1. Metric and Normed Spaces -- 2. Lebesgue Measure -- 3. Measurable Functions -- 4. The Lebesgue Integral -- 5. Differentiation -- 6. Absolute Continuity and the Fundamental Theorem of Calculus -- 7. The L<i>p Spaces -- 8. Hilbert Spaces and L^2(E) -- 9. Convolution and the Fourier Transform. 
520 |a Developed over years of classroom use, this textbook provides a clear and accessible approach to real analysis. This modern interpretation is based on the author's lecture notes and has been meticulously tailored to motivate students and inspire readers to explore the material, and to continue exploring even after they have finished the book. The definitions, theorems, and proofs contained within are presented with mathematical rigor, but conveyed in an accessible manner and with language and motivation meant for students who have not taken a previous course on this subject. The text covers all of the topics essential for an introductory course, including Lebesgue measure, measurable functions, Lebesgue integrals, differentiation, absolute continuity, Banach and Hilbert spaces, and more. Throughout each chapter, challenging exercises are presented, and the end of each section includes additional problems. Such an inclusive approach creates an abundance of opportunities for readers to develop their understanding, and aids instructors as they plan their coursework. Additional resources are available online, including expanded chapters, enrichment exercises, a detailed course outline, and much more. Introduction to Real Analysis is intended for first-year graduate students taking a first course in real analysis, as well as for instructors seeking detailed lecture material with structure and accessibility in mind. Additionally, its content is appropriate for Ph.D. students in any scientific or engineering discipline who have taken a standard upper-level undergraduate real analysis course. 
650 0 |a Measure theory. 
650 0 |a Operator theory. 
650 0 |a Topology. 
650 0 |a Functional analysis. 
650 0 |a Fourier analysis. 
650 1 4 |a Measure and Integration.  |0 http://scigraph.springernature.com/things/product-market-codes/M12120 
650 2 4 |a Operator Theory.  |0 http://scigraph.springernature.com/things/product-market-codes/M12139 
650 2 4 |a Topology.  |0 http://scigraph.springernature.com/things/product-market-codes/M28000 
650 2 4 |a Functional Analysis.  |0 http://scigraph.springernature.com/things/product-market-codes/M12066 
650 2 4 |a Fourier Analysis.  |0 http://scigraph.springernature.com/things/product-market-codes/M12058 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783030269012 
776 0 8 |i Printed edition:  |z 9783030269029 
830 0 |a Graduate Texts in Mathematics,  |x 0072-5285 ;  |v 280 
856 4 0 |u https://doi.org/10.1007/978-3-030-26903-6  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)