Introduction to Real Analysis
Developed over years of classroom use, this textbook provides a clear and accessible approach to real analysis. This modern interpretation is based on the author's lecture notes and has been meticulously tailored to motivate students and inspire readers to explore the material, and to continue...
Κύριος συγγραφέας: | |
---|---|
Συγγραφή απο Οργανισμό/Αρχή: | |
Μορφή: | Ηλεκτρονική πηγή Ηλ. βιβλίο |
Γλώσσα: | English |
Έκδοση: |
Cham :
Springer International Publishing : Imprint: Springer,
2019.
|
Έκδοση: | 1st ed. 2019. |
Σειρά: | Graduate Texts in Mathematics,
280 |
Θέματα: | |
Διαθέσιμο Online: | Full Text via HEAL-Link |
Πίνακας περιεχομένων:
- Preliminaries
- 1. Metric and Normed Spaces
- 2. Lebesgue Measure
- 3. Measurable Functions
- 4. The Lebesgue Integral
- 5. Differentiation
- 6. Absolute Continuity and the Fundamental Theorem of Calculus
- 7. The L<i>p Spaces
- 8. Hilbert Spaces and L^2(E)
- 9. Convolution and the Fourier Transform.