Hamiltonian Group Actions and Equivariant Cohomology

This monograph could be used for a graduate course on symplectic geometry as well as for independent study. The monograph starts with an introduction of symplectic vector spaces, followed by symplectic manifolds and then Hamiltonian group actions and the Darboux theorem. After discussing moment maps...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Dwivedi, Shubham (Συγγραφέας, http://id.loc.gov/vocabulary/relators/aut), Herman, Jonathan (http://id.loc.gov/vocabulary/relators/aut), Jeffrey, Lisa C. (http://id.loc.gov/vocabulary/relators/aut), van den Hurk, Theo (http://id.loc.gov/vocabulary/relators/aut)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Springer, 2019.
Έκδοση:1st ed. 2019.
Σειρά:SpringerBriefs in Mathematics,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03453nam a2200505 4500
001 978-3-030-27227-2
003 DE-He213
005 20190923211540.0
007 cr nn 008mamaa
008 190923s2019 gw | s |||| 0|eng d
020 |a 9783030272272  |9 978-3-030-27227-2 
024 7 |a 10.1007/978-3-030-27227-2  |2 doi 
040 |d GrThAP 
050 4 |a QA611-614.97 
072 7 |a PBP  |2 bicssc 
072 7 |a MAT038000  |2 bisacsh 
072 7 |a PBP  |2 thema 
082 0 4 |a 514  |2 23 
100 1 |a Dwivedi, Shubham.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Hamiltonian Group Actions and Equivariant Cohomology  |h [electronic resource] /  |c by Shubham Dwivedi, Jonathan Herman, Lisa C. Jeffrey, Theo van den Hurk. 
250 |a 1st ed. 2019. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2019. 
300 |a XI, 132 p. 3 illus., 1 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a SpringerBriefs in Mathematics,  |x 2191-8198 
505 0 |a Symplectic vector spaces -- Hamiltonian group actions -- The Darboux-Weinstein Theorem -- Elementary properties of moment maps -- The symplectic structure on coadjoint orbits -- Symplectic Reduction -- Convexity -- Toric Manifolds -- Equivariant Cohomology -- The Duistermaat-Heckman Theorem -- Geometric Quantization -- Flat connections on 2-manifolds. . 
520 |a This monograph could be used for a graduate course on symplectic geometry as well as for independent study. The monograph starts with an introduction of symplectic vector spaces, followed by symplectic manifolds and then Hamiltonian group actions and the Darboux theorem. After discussing moment maps and orbits of the coadjoint action, symplectic quotients are studied. The convexity theorem and toric manifolds come next and we give a comprehensive treatment of Equivariant cohomology. The monograph also contains detailed treatment of the Duistermaat-Heckman Theorem, geometric quantization, and flat connections on 2-manifolds. Finally, there is an appendix which provides background material on Lie groups. A course on differential topology is an essential prerequisite for this course. Some of the later material will be more accessible to readers who have had a basic course on algebraic topology. For some of the later chapters, it would be helpful to have some background on representation theory and complex geometry. 
650 0 |a Topology. 
650 0 |a Geometry. 
650 1 4 |a Topology.  |0 http://scigraph.springernature.com/things/product-market-codes/M28000 
650 2 4 |a Geometry.  |0 http://scigraph.springernature.com/things/product-market-codes/M21006 
700 1 |a Herman, Jonathan.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
700 1 |a Jeffrey, Lisa C.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
700 1 |a van den Hurk, Theo.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783030272265 
776 0 8 |i Printed edition:  |z 9783030272289 
830 0 |a SpringerBriefs in Mathematics,  |x 2191-8198 
856 4 0 |u https://doi.org/10.1007/978-3-030-27227-2  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)