Intersection Homology & Perverse Sheaves with Applications to Singularities /
This textbook provides a gentle introduction to intersection homology and perverse sheaves, where concrete examples and geometric applications motivate concepts throughout. By giving a taste of the main ideas in the field, the author welcomes new readers to this exciting area at the crossroads of to...
Κύριος συγγραφέας: | |
---|---|
Συγγραφή απο Οργανισμό/Αρχή: | |
Μορφή: | Ηλεκτρονική πηγή Ηλ. βιβλίο |
Γλώσσα: | English |
Έκδοση: |
Cham :
Springer International Publishing : Imprint: Springer,
2019.
|
Έκδοση: | 1st ed. 2019. |
Σειρά: | Graduate Texts in Mathematics,
281 |
Θέματα: | |
Διαθέσιμο Online: | Full Text via HEAL-Link |
Πίνακας περιεχομένων:
- Preface
- 1. Topology of singular spaces: motivation, overview
- 2. Intersection Homology: definition, properties
- 3. L-classes of stratified spaces
- 4. Brief introduction to sheaf theory
- 5. Poincaré-Verdier Duality
- 6. Intersection homology after Deligne
- 7. Constructibility in algebraic geometry
- 8. Perverse sheaves
- 9. The Decomposition Package and Applications
- 10. Hypersurface singularities. Nearby and vanishing cycles
- 11. Overview of Saito's mixed Hodge modules, and immediate applications
- 12. Epilogue
- Bibliography
- Index.